Suppr超能文献

救护车呼叫预测方法的实证研究——案例分析

An empirical investigation of forecasting methods for ambulance calls - a case study.

作者信息

Al-Azzani Mohamed A K, Davari Soheil, England Tracey Jane

机构信息

Department of Economics and Finance, Durham University Business School, Durham, UK.

Hertfordshire Business School, University of Hertfordshire, Hatfield, UK.

出版信息

Health Syst (Basingstoke). 2020 Jun 25;10(4):268-285. doi: 10.1080/20476965.2020.1783190. eCollection 2021.

Abstract

A primary goal of emergency services is to minimise the response times to emergencies whilst managing operational costs. This paper is motivated by real data from the Welsh Ambulance Service which in recent years has been criticised for not meeting its eight-minute response target. In this study, four forecasting approaches (ARIMA, Holt Winters, Multiple Regression and Singular Spectrum Analysis (SSA)) are considered to investigate whether they can provide more accurate predictions to the call volume demand (total and by category) than the current approach on a selection of planning horizons (weekly, monthly and 3-monthly). Each method is applied to a training and test set and root mean square error (RMSE) and mean absolute percentage error (MAPE) error statistics are determined. Results showed that ARIMA is the best forecasting method for weekly and monthly prediction of demand and the long-term demand is best predicted using the SSA method.

摘要

紧急服务的一个主要目标是在控制运营成本的同时,尽量缩短对紧急情况的响应时间。本文的研究动机源于威尔士救护车服务的实际数据,该服务近年来因未达到其八分钟响应目标而受到批评。在本研究中,考虑了四种预测方法(自回归积分移动平均模型(ARIMA)、霍尔特-温特斯方法、多元回归和奇异谱分析(SSA)),以研究在选定的规划周期(每周、每月和每三个月)内,与当前方法相比,它们是否能对呼叫量需求(总量和按类别)提供更准确的预测。每种方法都应用于训练集和测试集,并确定均方根误差(RMSE)和平均绝对百分比误差(MAPE)统计误差。结果表明,ARIMA是每周和每月需求预测的最佳方法,而长期需求预测则最好使用SSA方法。

相似文献

1
An empirical investigation of forecasting methods for ambulance calls - a case study.救护车呼叫预测方法的实证研究——案例分析
Health Syst (Basingstoke). 2020 Jun 25;10(4):268-285. doi: 10.1080/20476965.2020.1783190. eCollection 2021.
3
Short and Long term predictions of Hospital emergency department attendances.医院急诊科就诊人次的短期和长期预测。
Int J Med Inform. 2019 Sep;129:167-174. doi: 10.1016/j.ijmedinf.2019.05.011. Epub 2019 May 13.
5
Weather factors in the short-term forecasting of daily ambulance calls.日常救护车呼叫短期预测中的天气因素。
Int J Biometeorol. 2014 Jul;58(5):669-78. doi: 10.1007/s00484-013-0647-x. Epub 2013 Mar 3.
9
Multiple forecasting approach: a prediction of CO2 emission from the paddy crop in India.多种预测方法:对印度水稻作物 CO2 排放的预测。
Environ Sci Pollut Res Int. 2022 Apr;29(17):25461-25472. doi: 10.1007/s11356-021-17487-2. Epub 2021 Nov 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验