Tcyrulnikov Sergei, Cai Qiuqi, Twitty J Cameron, Xu Jianyu, Atifi Abderrahman, Bercher Olivia P, Yap Glenn P A, Rosenthal Joel, Watson Mary P, Kozlowski Marisa C
Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
ACS Catal. 2021 Jul 16;11(14):8456-8466. doi: 10.1021/acscatal.1c01860. Epub 2021 Jun 28.
Via conversion to Katritzky pyridinium salts, alkyl amines can now be used as alkyl radical precursors for a range of deaminative functionalization reactions. The key step of all these methods is single electron reduction of the pyridinium ring, which triggers C-N bond cleavage. However, little has been done to understand how the precise nature of the pyridinium influences these events. Using a combination of synthesis, computation, and electrochemistry, this study delineates the steric and electronic effects that substituents have on the canonical steps and the overall process. Depending on the approach taken, consideration of both the reduction and the subsequent radical dissociation may be necessary. Whereas the electronic effects on these steps work in opposition to each other, the steric effects are synergistic, with larger substituents favoring both steps. This understanding provides a framework for future design of pyridinium salts to match the mode of catalysis or activation.
通过转化为卡特里茨基吡啶鎓盐,烷基胺现在可以用作一系列脱氨基官能化反应的烷基自由基前体。所有这些方法的关键步骤是吡啶鎓环的单电子还原,这会引发C-N键的断裂。然而,对于吡啶鎓的精确性质如何影响这些过程,人们了解得很少。本研究结合合成、计算和电化学方法,描述了取代基对标准步骤和整个过程的空间和电子效应。根据所采用的方法,可能需要同时考虑还原和随后的自由基解离。虽然这些步骤上的电子效应相互拮抗,但空间效应是协同的,较大的取代基有利于这两个步骤。这种认识为未来设计吡啶鎓盐以匹配催化或活化模式提供了一个框架。