Suppr超能文献

卤代烃与烯烃的共催化偶联:卢剔啶的奇特作用

Co-Catalytic Coupling of Alkyl Halides and Alkenes: the Curious Role of Lutidine.

作者信息

Hanumanthu Roshini, Sharma Parul, Ethridge Avery, Weaver Jimmie D

机构信息

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States.

出版信息

J Am Chem Soc. 2025 Feb 12;147(6):5238-5246. doi: 10.1021/jacs.4c15812. Epub 2025 Feb 2.

Abstract

Continuous pressure to shorten synthetic sequences along with the concomitant expansion of scope makes the use of alkyl bromides, chlorides, and oxygen based leaving groups- which are abundant and readily available feedstocks, highly attractive for C-C bond synthesis. However, selective activation of these bonds to generate radical intermediates remains challenging and is generally unfeasible using traditional activation strategies. Herein, we report a dual catalytic activation strategy to access primary, secondary, and tertiary alkyl radicals from respective alkyl chlorides and bromides, as well as primary tosylates and trifluoroacetates. While the method relies on visible light and a photocatalyst to facilitate electron transfer, based on reduction potentials, the substrates are not expected to be reduceable, and yet they are reduced in the presence of lutidine. Ultimately, our investigation revealed that lutidine was a precatalyst and ultimately led to the use of lutidinium iodide salt which served as a critical cocatalyst that resulted in improved reaction profiles. Our studies revealed two critical roles that lutidinium iodide salts play which made it possible to engage otherwise unreactive substrates: nucleophilic exchange and halogen atom transfer by the lutidinium radical. In short, this work converts unactivated alkyl chlorides, bromides, tosylates, and trifluoroacetates to radicals that can be used for C-C bond formation without the need for preactivation─effectively expediting synthesis.

摘要

不断缩短合成序列的压力以及随之而来的反应范围的扩大,使得烷基溴化物、氯化物和基于氧的离去基团(这些都是丰富且易于获得的原料)在碳-碳键合成中极具吸引力。然而,选择性激活这些键以生成自由基中间体仍然具有挑战性,并且使用传统的激活策略通常是不可行的。在此,我们报告了一种双催化激活策略,可从相应的烷基氯化物、溴化物以及伯甲苯磺酸酯和三氟乙酸酯中获得伯、仲和叔烷基自由基。虽然该方法依赖于可见光和光催化剂来促进电子转移,但基于还原电位,底物预计是不可还原的,但在有2,6-二甲基吡啶存在的情况下它们却被还原了。最终,我们的研究表明2,6-二甲基吡啶是一种前催化剂,最终导致使用碘化2,6-二甲基吡啶鎓盐,它作为一种关键的助催化剂,改善了反应情况。我们的研究揭示了碘化2,6-二甲基吡啶鎓盐所起的两个关键作用,这使得原本不反应的底物能够参与反应:亲核交换和2,6-二甲基吡啶鎓自由基的卤原子转移。简而言之,这项工作将未活化的烷基氯化物、溴化物、甲苯磺酸酯和三氟乙酸酯转化为可用于碳-碳键形成的自由基,而无需预活化,从而有效地加快了合成速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验