Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India.
School of Life Science and Biotechnology, Yangtze Normal University, Ch-ongqing, China.
Bioengineered. 2021 Dec;12(2):10430-10456. doi: 10.1080/21655979.2021.1997244.
Global projections on the climate change and the dynamic environmental perturbations indicate severe impacts on food security in general, and crop yield, vigor and the quality of produce in particular. Sessile plants respond to environmental challenges such as salt, drought, temperature, heavy metals at transcriptional and/or post-transcriptional levels through the stress-regulated network of pathways including transcription factors, proteins and the small non-coding endogenous RNAs. Amongs these, the miRNAs have gained unprecedented attention in recent years as key regulators for modulating gene expression in plants under stress. Hence, tailoring of miRNAs and their target pathways presents a promising strategy for developing multiple stress-tolerant crops. Plant stress tolerance has been successfully achieved through the over expression of microRNAs such as Os-miR408, Hv-miR82 for drought tolerance; OsmiR535A and artificial DST miRNA for salinity tolerance; and OsmiR535 and miR156 for combined drought and salt stress. Examples of miR408 overexpression also showed improved efficiency of irradiation utilization and carbon dioxide fixation in crop plants. Through this review, we present the current understanding about plant miRNAs, their roles in plant growth and stress-responses, the modern toolbox for identification, characterization and validation of miRNAs and their target genes including tools, machine learning and artificial intelligence. Various approaches for up-regulation or knock-out of miRNAs have been discussed. The main emphasis has been given to the exploration of miRNAs for development of bioengineered climate-smart crops that can withstand changing climates and stressful environments, including combination of stresses, with very less or no yield penalties.
全球气候变化和动态环境干扰的预测表明,这将对粮食安全产生严重影响,特别是对作物产量、活力和产品质量的影响。固着植物通过包括转录因子、蛋白质和小非编码内源性 RNA 在内的应激调节途径网络,在转录和/或转录后水平上对盐、干旱、温度、重金属等环境挑战做出反应。在这些途径中,miRNA 近年来受到了前所未有的关注,成为植物在应激条件下调节基因表达的关键调节剂。因此,定制 miRNA 及其靶途径为开发多种耐应激作物提供了一种有前途的策略。通过过表达 microRNAs 如 Os-miR408、Hv-miR82 来提高植物的耐旱性;过表达 OsmiR535A 和人工 DST miRNA 来提高植物的耐盐性;过表达 OsmiR535 和 miR156 来提高植物对干旱和盐胁迫的耐受性,已经成功地实现了植物的抗逆性。miR408 过表达的例子也显示出提高了作物光合作用和二氧化碳固定的效率。通过这篇综述,我们介绍了植物 miRNA 的最新研究进展,包括它们在植物生长和应激反应中的作用、鉴定、表征和验证 miRNA 及其靶基因的现代工具盒,包括工具、机器学习和人工智能。还讨论了上调或敲除 miRNA 的各种方法。重点探讨了利用 miRNA 开发生物工程气候智能作物的潜力,这些作物可以耐受不断变化的气候和胁迫环境,包括多种胁迫的组合,且产量损失很小或没有。