New England Biolabs, Ipswich, United States.
School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Elife. 2021 Nov 8;10:e70021. doi: 10.7554/eLife.70021.
Shotgun metagenomic sequencing is a powerful approach to study microbiomes in an unbiased manner and of increasing relevance for identifying novel enzymatic functions. However, the potential of metagenomics to relate from microbiome composition to function has thus far been underutilized. Here, we introduce the Metagenomics Genome-Phenome Association (MetaGPA) study framework, which allows linking genetic information in metagenomes with a dedicated functional phenotype. We applied MetaGPA to identify enzymes associated with cytosine modifications in environmental samples. From the 2365 genes that met our significance criteria, we confirm known pathways for cytosine modifications and proposed novel cytosine-modifying mechanisms. Specifically, we characterized and identified a novel nucleic acid-modifying enzyme, 5-hydroxymethylcytosine carbamoyltransferase, that catalyzes the formation of a previously unknown cytosine modification, 5-carbamoyloxymethylcytosine, in DNA and RNA. Our work introduces MetaGPA as a novel and versatile tool for advancing functional metagenomics.
shotgun 宏基因组测序是一种强大的方法,可以在不偏倚的情况下研究微生物组,并且越来越有助于确定新的酶功能。然而,宏基因组学将微生物组组成与功能联系起来的潜力迄今尚未得到充分利用。在这里,我们介绍了宏基因组基因组-表型关联(MetaGPA)研究框架,该框架允许将宏基因组中的遗传信息与专门的功能表型联系起来。我们应用 MetaGPA 来鉴定与环境样本中胞嘧啶修饰相关的酶。在满足我们显著性标准的 2365 个基因中,我们确认了胞嘧啶修饰的已知途径,并提出了新的胞嘧啶修饰机制。具体来说,我们对一种新型的核酸修饰酶 5-羟甲基胞嘧啶碳酰转移酶进行了表征和鉴定,该酶可催化 DNA 和 RNA 中一种以前未知的胞嘧啶修饰物 5- 碳酰胺氧甲基胞嘧啶的形成。我们的工作介绍了 MetaGPA 作为一种新颖而通用的工具,用于推进功能宏基因组学。