Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
J Chem Inf Model. 2021 Nov 22;61(11):5626-5643. doi: 10.1021/acs.jcim.1c00973. Epub 2021 Nov 8.
PlaF is a cytoplasmic membrane-bound phospholipase A from that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive. Here, we combined unbiased and biased all-atom molecular dynamics (MD) simulations and configurational free-energy computations to identify access pathways of GPL substrates to the catalytic center of PlaF. Our results map out a distinct tunnel through which substrates access the catalytic center. PlaF variants with bulky tryptophan residues in this tunnel revealed decreased catalysis rates due to tunnel blockage. The MD simulations suggest that GPLs preferably enter the active site with the -1 acyl chain first, which agrees with the experimentally demonstrated PLA activity of PlaF. We propose that the acyl chain-length specificity of PlaF is determined by the structural features of the access tunnel, which results in favorable free energy of binding of medium-chain GPLs. The suggested egress route conveys fatty acid (FA) products to the dimerization interface and, thus, contributes to understanding the product feedback regulation of PlaF by FA-triggered dimerization. These findings open up opportunities for developing potential PlaF inhibitors, which may act as antibiotics against .
PlaF 是一种来自 的细胞质膜结合型磷脂酶 A,可改变膜甘油磷脂 (GPL) 的组成并促进该人类病原体的毒力。PlaF 的活性受二聚体到单体的转变以及单体在膜中的倾斜调节。然而,底物如何到达活性位点以及活性位点隧道的特性如何决定 PlaF 对天然 GPL 底物的活性、特异性和区域选择性仍然难以捉摸。在这里,我们结合无偏和有偏全原子分子动力学 (MD) 模拟和构象自由能计算,以确定 GPL 底物到达 PlaF 催化中心的途径。我们的结果描绘了一条独特的隧道,底物通过该隧道进入催化中心。该隧道中含有大体积色氨酸残基的 PlaF 变体由于隧道阻塞而显示出降低的催化速率。MD 模拟表明,GPL 优选地首先带有 -1 酰基链进入活性位点,这与 PlaF 实验证明的 PLA 活性一致。我们提出 PlaF 的酰链长度特异性由进入隧道的结构特征决定,这导致中等链长 GPL 的结合自由能有利。建议的出口途径将脂肪酸 (FA) 产物输送到二聚化界面,从而有助于理解 FA 触发的二聚化对 PlaF 的产物反馈调节。这些发现为开发潜在的 PlaF 抑制剂提供了机会,这些抑制剂可能作为针对 的抗生素发挥作用。