Gentile Rocco, Modric Matea, Thiele Björn, Jaeger Karl-Erich, Kovacic Filip, Schott-Verdugo Stephan, Gohlke Holger
Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
JACS Au. 2024 Feb 27;4(3):958-973. doi: 10.1021/jacsau.3c00725. eCollection 2024 Mar 25.
PlaF is a membrane-bound phospholipase A from that is involved in remodeling membrane glycerophospholipids (GPLs) and modulating virulence-associated signaling and metabolic pathways. Previously, we identified the role of medium-chain free fatty acids (FFAs) in inhibiting PlaF activity and promoting homodimerization, yet the underlying molecular mechanism remained elusive. Here, we used unbiased and biased molecular dynamics simulations and free energy computations to assess how PlaF interacts with FFAs localized in the water milieu surrounding the bilayer or within the bilayer and how these interactions regulate PlaF activity. Medium-chain FFAs localized in the upper bilayer leaflet can stabilize inactive dimeric PlaF, likely through interactions with charged surface residues, as has been experimentally validated. Potential of mean force (PMF) computations indicate that membrane-bound FFAs may facilitate the activation of monomeric PlaF by lowering the activation barrier for changing into a tilted, active configuration. We estimated that the coupled equilibria of PlaF monomerization-dimerization and tilting at the physiological concentration of PlaF lead to the majority of PlaF forming inactive dimers when in a cell membrane loaded with decanoic acid (C10). This is in agreement with a suggested in vivo product feedback loop and gas chromatography-mass spectrometry profiling results, indicating that PlaF catalyzes the release of C10 from membranes. Additionally, we found that C10 in the water milieu can access the catalytic site of active monomeric PlaF, contributing to the competitive component of C10-mediated PlaF inhibition. Our study provides mechanistic insights into how medium-chain FFAs may regulate the activity of PlaF, a potential bacterial drug target.
PlaF是一种来自[具体来源未给出]的膜结合磷脂酶A,参与重塑膜甘油磷脂(GPLs)以及调节与毒力相关的信号传导和代谢途径。此前,我们已确定中链游离脂肪酸(FFAs)在抑制PlaF活性和促进同二聚化方面的作用,但其潜在的分子机制仍不清楚。在此,我们使用无偏和有偏分子动力学模拟以及自由能计算,来评估PlaF如何与位于双层膜周围水环境或双层膜内的FFAs相互作用,以及这些相互作用如何调节PlaF活性。如实验所验证的,位于双层膜上层小叶的中链FFAs可能通过与带电荷的表面残基相互作用,来稳定无活性的二聚体PlaF。平均力势(PMF)计算表明,膜结合的FFAs可能通过降低转变为倾斜的活性构象的活化能垒,来促进单体PlaF的活化。我们估计,在PlaF的生理浓度下,PlaF单体化 - 二聚化和倾斜的耦合平衡导致当在负载癸酸(C10)的细胞膜中时,大多数PlaF形成无活性的二聚体。这与体内产物反馈回路的推测以及气相色谱 - 质谱分析结果一致,表明PlaF催化C10从膜中释放。此外,我们发现水环境中的C10可以进入活性单体PlaF的催化位点,这是C10介导的PlaF抑制的竞争成分。我们的研究为中链FFAs如何调节PlaF(一种潜在的细菌药物靶点)的活性提供了机制上的见解。