Centre d'Etudes et Recherche sur le Médicament de Normandie (CERMN), Université Normandie, UNICAEN, Caen 14000, France.
J Chem Inf Model. 2021 Nov 22;61(11):5581-5588. doi: 10.1021/acs.jcim.1c00660. Epub 2021 Nov 8.
Detection of cryptic pockets (hidden protein pockets) is a hot topic in structure-based drug discovery, especially for drugging the yet undruggable proteome. The experimental detection of cryptic pockets is still considered an expensive endeavor. Thus, computational methods, such as atomistic simulations, are used instead. These simulation methods can provide a perspective on protein dynamics that overpasses the experimental X-ray structures' static and average view. Nonetheless, unbiased molecular dynamics (MD) simulations fall short to detect transient and cryptic pockets requiring the crossing of high-energy barriers. Enhanced sampling methods, such as Metadynamics, provide a solution to overcome the time-scale problem faced by unbiased MD simulations. However, these methods are still limited by the availability of collective variable space to capture the intricate parameters, leading to the opening of cryptic pockets. Unfortunately, the design of such collective variables requires a priori knowledge of the binding site, information that is by definition lacking for cryptic pockets. In this work, we evaluated the use of the Metadynamics biasing scheme on essential coordinates space as a general method for cryptic pocket detection. This approach was applied to an antiapoptotic protein: Mcl-1 as a test model. In addition to providing a broader characterization of Mcl-1's conformational space, we show the effectiveness of this method in drawing the full repository of Mcl-1's known and novel cryptic pockets in an unsupervised manner.
隐匿口袋(隐藏的蛋白质口袋)的检测是基于结构的药物发现中的一个热门话题,特别是对于药物靶向尚未可成药的蛋白质组。实验性隐匿口袋检测仍然被认为是一项昂贵的工作。因此,取而代之的是使用计算方法,如原子模拟。这些模拟方法可以提供超越实验 X 射线结构静态和平均观点的蛋白质动力学视角。尽管如此,无偏分子动力学(MD)模拟无法检测需要跨越高能量势垒的瞬态和隐匿口袋。增强采样方法,如元动力学(Metadynamics),为克服无偏 MD 模拟面临的时间尺度问题提供了一种解决方案。然而,这些方法仍然受到可用的集体变量空间的限制,无法捕捉到复杂的参数,从而导致隐匿口袋的打开。不幸的是,这种集体变量的设计需要先验的结合位点知识,而对于隐匿口袋来说,这种信息是缺失的。在这项工作中,我们评估了将元动力学偏置方案应用于必需坐标空间作为隐匿口袋检测的一般方法。这种方法应用于抗凋亡蛋白 Mcl-1 作为测试模型。除了提供对 Mcl-1 构象空间的更广泛描述外,我们还展示了该方法在以无监督方式绘制 Mcl-1 已知和新颖隐匿口袋的全部存储库方面的有效性。