Suppr超能文献

助溶剂增强采样及隐匿口袋无偏鉴定技术在基于结构的药物设计中的应用。

Cosolvent-Enhanced Sampling and Unbiased Identification of Cryptic Pockets Suitable for Structure-Based Drug Design.

机构信息

Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany.

Medicinal Sciences , Pfizer Inc. , Cambridge , Massachusetts 02139 , United States.

出版信息

J Chem Theory Comput. 2019 May 14;15(5):3331-3343. doi: 10.1021/acs.jctc.8b01295. Epub 2019 May 6.

Abstract

Modulating protein activity with small-molecules binding to cryptic pockets offers great opportunities to overcome hurdles in drug design. Cryptic sites are atypical binding sites in proteins that are closed in the absence of a stabilizing ligand and are thus inherently difficult to identify. Many studies have proposed methods to predict cryptic sites. However, a general approach to prospectively sample open conformations of these sites and to identify cryptic pockets in an unbiased manner suitable for structure-based drug design remains elusive. Here, we describe an all-atom, explicit cosolvent, molecular dynamics (MD) simulations-based workflow to sample the open states of cryptic sites and identify opened pockets, in a manner that does not require a priori knowledge about these sites. Furthermore, the workflow relies on a target-independent parametrization that only distinguishes between binding pockets for peptides or small molecules. We validated our approach on a diverse test set of seven proteins with crystallographically determined cryptic sites. The known cryptic sites were found among the three highest-ranked predicted cryptic sites, and an open site conformation was sampled and selected for most of the systems. Crystallographic ligand poses were well reproduced by docking into these identified open conformations for five of the systems. When the fully open state could not be reproduced, we were still able to predict the location of the cryptic site, or identify other cryptic sites that could be retrospectively validated with knowledge of the protein target. These characteristics render our approach valuable for investigating novel protein targets without any prior information.

摘要

利用小分子与隐匿口袋结合来调节蛋白质活性为克服药物设计中的障碍提供了巨大的机会。隐匿位点是蛋白质中不典型的结合位点,在没有稳定配体的情况下处于关闭状态,因此很难识别。许多研究都提出了预测隐匿位点的方法。然而,一种普遍的方法来前瞻性地采样这些位点的开放构象,并以适合基于结构的药物设计的无偏方式识别隐匿口袋,仍然难以捉摸。在这里,我们描述了一种基于全原子、显式溶剂、分子动力学(MD)模拟的工作流程,用于采样隐匿位点的开放状态并识别开放口袋,而无需这些位点的先验知识。此外,该工作流程依赖于目标独立的参数化,仅区分肽或小分子的结合口袋。我们在具有晶体学确定的隐匿位点的七个蛋白质的多样化测试集中验证了我们的方法。已知的隐匿位点位于三个预测的隐匿位点中排名最高的三个,并且为大多数系统采样和选择了开放位点构象。对于五个系统中的五个,晶体配体构象通过对接到这些鉴定的开放构象中得到了很好的重现。当无法重现完全开放状态时,我们仍然能够预测隐匿位点的位置,或者识别其他隐匿位点,这些隐匿位点可以通过对蛋白质靶标的了解进行回溯验证。这些特性使得我们的方法对于研究没有任何先验信息的新型蛋白质靶标具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验