Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Marseille, France; Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Marseille, France.
Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Marseille, France.
J Biol Chem. 2022 Feb;298(2):101384. doi: 10.1016/j.jbc.2021.101384. Epub 2021 Nov 6.
The molybdenum/tungsten-bis-pyranopterin guanine dinucleotide family of formate dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting because of their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates used by partner subunits interacting with the catalytic hub. Here, we unveiled two noncanonical FDHs in Bacillus subtilis, which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the formate oxidoreductase catalytic subunit interacts with an unprecedented partner subunit, formate oxidoreductase essential subunit, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The formate oxidoreductase essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic molybdenum/bis-pyranopterin guanine dinucleotide cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a noncanonical FDH, which differs in terms of architecture, amino acid conservation around the molybdenum cofactor, and reactivity.
钼/钨-双吡喃并叶啉鸟嘌呤二核苷酸家族的甲酸脱氢酶(FDHs)在多种代谢途径中发挥作用,从碳固定到能量收获,因为它们与各种各样的氧化还原伴侣反应。事实上,这种代谢灵活性源于与催化中心相互作用的伴侣亚基的多样化结构、辅因子含量和底物。在这里,我们在枯草芽孢杆菌中揭示了两种非典型的 FDH,它们以独特的特征组织成二聚体复合物,分别称为 ForCE1 和 ForCE2。我们表明,甲酸氧化还原酶催化亚基与一个前所未有的伴侣亚基,甲酸氧化还原酶必需亚基相互作用,其在活性位点的氨基酸序列偏离了通常与 FDH 活性相关的共识残基,因为组氨酸残基自然被谷氨酰胺取代。甲酸氧化还原酶必需亚基介导了menaquinone 的利用,正如两种酶的甲酸:维生素 K3 氧化还原酶活性、它们与menaquinone 的共纯化以及通过纯化酶的多频电子顺磁共振(EPR)实验对结合在蛋白质上的中性 menasemiquinone 自由基的独特检测所证明的那样。此外,两种 FDH 的 EPR 特征表明存在几种具有不同弛豫特性和弱各向异性 Mo(V) EPR 特征的[Fe-S]簇,这与该酶家族的典型钼/双吡喃并叶啉鸟嘌呤二核苷酸辅因子一致。总之,这项工作通过鉴定一种非典型的 FDH 来扩大我们对 FDH 家族的认识,该 FDH 在结构、钼辅因子周围的氨基酸保守性和反应性方面存在差异。