Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France.
Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.
Biophys J. 2021 Dec 7;120(23):5187-5195. doi: 10.1016/j.bpj.2021.11.002. Epub 2021 Nov 6.
The mitochondrial ADP/ATP carrier (AAC) performs the first and last step in oxidative phosphorylation by exchanging ADP and ATP across the mitochondrial inner membrane. Its optimal function has been shown to be dependent on cardiolipins (CLs), unique phospholipids located almost exclusively in the mitochondrial membrane. In addition, AAC exhibits an enthralling threefold pseudosymmetry, a unique feature of members of the SLC25 family. Recently, its conformation poised for binding of ATP was solved by x-ray crystallography referred to as the matrix state. Binding of the substrate leads to conformational changes that export of ATP to the mitochondrial intermembrane space. In this contribution, we investigate the influence of CLs on the structure, substrate-binding properties, and structural symmetry of the matrix state, employing microsecond-scale molecular dynamics simulations. Our findings demonstrate that CLs play a minor stabilizing role on the AAC structure. The interdomain salt bridges and hydrogen bonds forming the cytoplasmic network and tyrosine braces, which ensure the integrity of the global AAC scaffold, highly benefit from the presence of CLs. Under these conditions, the carrier is found to be organized in a more compact structure in its interior, as revealed by analyses of the electrostatic potential, measure of the AAC cavity aperture, and the substrate-binding assays. Introducing a convenient structure-based symmetry metric, we quantified the structural threefold pseudosymmetry of AAC, not only for the crystallographic structure, but also for conformational states of the carrier explored in the molecular dynamics simulations. Our results suggest that CLs moderately contribute to preserve the pseudosymmetric structure of AAC.
线粒体 ADP/ATP 载体(AAC)通过在线粒体膜间交换 ADP 和 ATP 来完成氧化磷酸化的第一步和最后一步。其最佳功能已被证明依赖于心磷脂(CLs),这是一种几乎只存在于线粒体膜中的独特磷脂。此外,AAC 表现出迷人的三倍拟态,这是 SLC25 家族成员的独特特征。最近,通过 X 射线晶体学解决了其结合 ATP 的构象,称为基质状态。底物结合导致构象变化,将 ATP 输出到线粒体膜间空间。在本研究中,我们使用微秒级别的分子动力学模拟研究了 CLs 对基质状态的结构、底物结合特性和结构对称性的影响。我们的研究结果表明,CLs 对 AAC 结构的稳定作用较小。形成细胞质网络的域间盐桥和氢键以及稳定 AAC 整体支架的酪氨酸支架高度受益于 CLs 的存在。在这些条件下,载体在其内部呈现出更紧凑的结构,这可以通过分析静电势、AAC 腔开口的测量和底物结合试验来揭示。通过引入一种方便的基于结构的对称度量,我们不仅对晶体学结构,而且对分子动力学模拟中探索的载体构象状态进行了量化,从而量化了 AAC 的结构三倍拟态。我们的结果表明,CLs 适度有助于维持 AAC 的拟态结构。