Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
Genome Res. 2021 Nov;31(11):2138-2154. doi: 10.1101/gr.275368.121. Epub 2021 Aug 18.
Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by "writer" and "eraser" enzymes, respectively. Nucleosomal PTMs are recognized by a variety of "reader" proteins that alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 65 predicted readers, writers, and erasers of histone acetylation and methylation encoded in the genome and, by epitope tagging, systemically localize 60 of them in the parasite's bloodstream form. ChIP-seq shows that 15 candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins show a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identify distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcription start regions. The systematic approach used provides details of the composition and organization of the chromatin regulatory machinery in and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.
核小体由组蛋白组成,是 DNA 缠绕形成染色质的基本单位。转录活跃的常染色质或抑制性异染色质部分受“写入器”和“擦除器”酶分别通过添加或去除组蛋白翻译后修饰(PTMs)来调节。核小体 PTMs 被各种“读取器”蛋白识别,这些蛋白相应地改变基因表达。进化上分化的真核寄生虫的组蛋白尾部具有与通常被认为普遍保守的序列和 PTMs 不同的独特序列和 PTMs。在这里,我们鉴定了 编码的组蛋白乙酰化和甲基化的 65 个预测读取器、写入器和擦除器,并通过表位标记系统地在寄生虫的血腔形式中定位了其中的 60 个。ChIP-seq 表明,15 个候选蛋白与 RNAPII 转录起始区域相关联。其他 8 种蛋白具有独特的分布,在由 RNAPIII 转录的 tRNA 和 snRNA 基因标记的 RNAPII 转录终止区域的子集上具有特定的峰。蛋白质组学分析确定了由已知染色质调节剂和新型锥虫特异性成分组成的不同蛋白质相互作用网络。值得注意的是,几个 SET 和溴结构域蛋白网络表明与常规真核生物中 RNAPII 启动子相关复合物存在相似之处。此外,我们鉴定了 TbSWR1 和 TbNuA4 复合物的可能成分,其富集与 RNAPII 转录起始区域的 SWR1-C 交换底物 H2A.Z 一致。所使用的系统方法提供了 染色质调节机制的组成和组织的详细信息,并为探索在进化古老但实验可访问的真核生物中与真核规范的差异建立了一条途径。