Suppr超能文献

三维卷积神经网络中的局部旋转不变性。

Local rotation invariance in 3D CNNs.

机构信息

Institute of Information Systems, University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland.

Institute of Information Systems, University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland; Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts.

出版信息

Med Image Anal. 2020 Oct;65:101756. doi: 10.1016/j.media.2020.101756. Epub 2020 Jun 20.

Abstract

Locally Rotation Invariant (LRI) image analysis was shown to be fundamental in many applications and in particular in medical imaging where local structures of tissues occur at arbitrary rotations. LRI constituted the cornerstone of several breakthroughs in texture analysis, including Local Binary Patterns (LBP), Maximum Response 8 (MR8) and steerable filterbanks. Whereas globally rotation invariant Convolutional Neural Networks (CNN) were recently proposed, LRI was very little investigated in the context of deep learning. LRI designs allow learning filters accounting for all orientations, which enables a drastic reduction of trainable parameters and training data when compared to standard 3D CNNs. In this paper, we propose and compare several methods to obtain LRI CNNs with directional sensitivity. Two methods use orientation channels (responses to rotated kernels), either by explicitly rotating the kernels or using steerable filters. These orientation channels constitute a locally rotation equivariant representation of the data. Local pooling across orientations yields LRI image analysis. Steerable filters are used to achieve a fine and efficient sampling of 3D rotations as well as a reduction of trainable parameters and operations, thanks to a parametric representations involving solid Spherical Harmonics (SH),which are products of SH with associated learned radial profiles. Finally, we investigate a third strategy to obtain LRI based on rotational invariants calculated from responses to a learned set of solid SHs. The proposed methods are evaluated and compared to standard CNNs on 3D datasets including synthetic textured volumes composed of rotated patterns, and pulmonary nodule classification in CT. The results show the importance of LRI image analysis while resulting in a drastic reduction of trainable parameters, outperforming standard 3D CNNs trained with rotational data augmentation.

摘要

局部旋转不变(LRI)图像分析在许多应用中非常重要,特别是在医学成像中,组织的局部结构以任意角度出现。LRI 是纹理分析的几个突破的基础,包括局部二值模式(LBP)、最大响应 8(MR8)和可操纵滤波器组。尽管最近提出了全局旋转不变卷积神经网络(CNN),但 LRI 在深度学习中的研究很少。LRI 设计允许学习考虑所有方向的滤波器,这与标准的 3D CNN 相比,可以大大减少可训练参数和训练数据。在本文中,我们提出并比较了几种获得具有方向敏感性的 LRI CNN 的方法。两种方法使用方向通道(对旋转核的响应),要么通过显式旋转核,要么使用可操纵滤波器。这些方向通道构成了数据的局部旋转等变表示。在方向上进行局部池化可得到 LRI 图像分析。可操纵滤波器用于实现 3D 旋转的精细和高效采样,以及减少可训练参数和操作,这要归功于涉及固态球谐函数(SH)的参数表示,这些函数是 SH 与相关学习的径向轮廓的乘积。最后,我们研究了第三种基于从学习的固态 SH 集的响应计算得到的旋转不变量来获得 LRI 的策略。在所提出的方法中,在包括由旋转模式组成的合成纹理体积和 CT 中的肺结节分类在内的 3D 数据集上对标准 CNN 进行了评估和比较。结果表明了 LRI 图像分析的重要性,同时大大减少了可训练参数,优于使用旋转数据增强训练的标准 3D CNN。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验