Suppr超能文献

一种从电子健康记录中识别跌倒事件发生情况的混合模型。

A hybrid model to identify fall occurrence from electronic health records.

作者信息

Fu Sunyang, Thorsteinsdottir Bjoerg, Zhang Xin, Lopes Guilherme S, Pagali Sandeep R, LeBrasseur Nathan K, Wen Andrew, Liu Hongfang, Rocca Walter A, Olson Janet E, Sauver Jennifer St, Sohn Sunghwan

机构信息

Department of AI and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; University of Minnesota, Minneapolis, MN 55455, USA.

Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

出版信息

Int J Med Inform. 2022 Mar 7;162:104736. doi: 10.1016/j.ijmedinf.2022.104736.

Abstract

INTRODUCTION

Falls are a leading cause of unintentional injury in the elderly. Electronic health records (EHRs) offer the unique opportunity to develop models that can identify fall events. However, identifying fall events in clinical notes requires advanced natural language processing (NLP) to simultaneously address multiple issues because the word "fall" is a typical homonym.

METHODS

We implemented a context-aware language model, Bidirectional Encoder Representations from Transformers (BERT) to identify falls from the EHR text and further fused the BERT model into a hybrid architecture coupled with post-hoc heuristic rules to enhance the performance. The models were evaluated on real world EHR data and were compared to conventional rule-based and deep learning models (CNN and Bi-LSTM). To better understand the ability of each approach to identify falls, we further categorize fall-related concepts (i.e., risk of fall, prevention of fall, homonym) and performed a detailed error analysis.

RESULTS

The hybrid model achieved the highest f1-score on sentence (0.971), document (0.985), and patient (0.954) level. At the sentence level (basic data unit in the model), the hybrid model had 0.954, 1.000, 0.988, and 0.999 in sensitivity, specificity, positive predictive value, and negative predictive value, respectively. The error analysis showed that that machine learning-based approaches demonstrated higher performance than a rule-based approach in challenging cases that required contextual understanding. The context-aware language model (BERT) slightly outperformed the word embedding approach trained on Bi-LSTM. No single model yielded the best performance for all fall-related semantic categories.

CONCLUSION

A context-aware language model (BERT) was able to identify challenging fall events that requires context understanding in EHR free text. The hybrid model combined with post-hoc rules allowed a custom fix on the BERT outcomes and further improved the performance of fall detection.

摘要

引言

跌倒是老年人意外伤害的主要原因。电子健康记录(EHR)为开发能够识别跌倒事件的模型提供了独特的机会。然而,在临床记录中识别跌倒事件需要先进的自然语言处理(NLP)来同时解决多个问题,因为“跌倒”这个词是典型的同音异义词。

方法

我们实现了一种上下文感知语言模型,即来自变换器的双向编码器表示(BERT),用于从EHR文本中识别跌倒事件,并进一步将BERT模型融合到一个混合架构中,结合事后启发式规则以提高性能。这些模型在真实世界的EHR数据上进行了评估,并与传统的基于规则的模型和深度学习模型(CNN和双向长短期记忆网络(Bi-LSTM))进行了比较。为了更好地理解每种方法识别跌倒事件的能力,我们进一步对与跌倒相关的概念(即跌倒风险、跌倒预防、同音异义词)进行了分类,并进行了详细的错误分析。

结果

混合模型在句子(0.971)、文档(0.985)和患者(0.954)级别上获得了最高的F1分数。在句子级别(模型中的基本数据单元),混合模型的灵敏度、特异性、阳性预测值和阴性预测值分别为0.954、1.000、0.988和0.999。错误分析表明,在需要上下文理解的具有挑战性的案例中,基于机器学习的方法比基于规则的方法表现出更高的性能。上下文感知语言模型(BERT)略优于在Bi-LSTM上训练的词嵌入方法。没有一个单一模型在所有与跌倒相关的语义类别上都表现出最佳性能。

结论

上下文感知语言模型(BERT)能够识别EHR自由文本中需要上下文理解的具有挑战性的跌倒事件。结合事后规则的混合模型允许对BERT结果进行定制修正,并进一步提高了跌倒检测的性能。

相似文献

1
A hybrid model to identify fall occurrence from electronic health records.
Int J Med Inform. 2022 Mar 7;162:104736. doi: 10.1016/j.ijmedinf.2022.104736.
7
Interventions for preventing falls in older people in care facilities.
Cochrane Database Syst Rev. 2025 Aug 20;8:CD016064. doi: 10.1002/14651858.CD016064.
8
AD-BERT: Using pre-trained language model to predict the progression from mild cognitive impairment to Alzheimer's disease.
J Biomed Inform. 2023 Aug;144:104442. doi: 10.1016/j.jbi.2023.104442. Epub 2023 Jul 8.

引用本文的文献

3
Heterogeneity of diagnosis and documentation of post-COVID conditions in primary care: A machine learning analysis.
PLoS One. 2025 May 16;20(5):e0324017. doi: 10.1371/journal.pone.0324017. eCollection 2025.
5
Improving postsurgical fall detection for older Americans using LLM-driven analysis of clinical narratives.
medRxiv. 2024 Jun 26:2024.06.25.24309480. doi: 10.1101/2024.06.25.24309480.
8
FedFSA: Hybrid and federated framework for functional status ascertainment across institutions.
J Biomed Inform. 2024 Apr;152:104623. doi: 10.1016/j.jbi.2024.104623. Epub 2024 Mar 6.

本文引用的文献

1
Clinical concept extraction: A methodology review.
J Biomed Inform. 2020 Sep;109:103526. doi: 10.1016/j.jbi.2020.103526. Epub 2020 Aug 6.
2
Assessment of the impact of EHR heterogeneity for clinical research through a case study of silent brain infarction.
BMC Med Inform Decis Mak. 2020 Mar 30;20(1):60. doi: 10.1186/s12911-020-1072-9.
3
Deep learning in clinical natural language processing: a methodical review.
J Am Med Inform Assoc. 2020 Mar 1;27(3):457-470. doi: 10.1093/jamia/ocz200.
7
The direct costs of fatal and non-fatal falls among older adults - United States.
J Safety Res. 2016 Sep;58:99-103. doi: 10.1016/j.jsr.2016.05.001. Epub 2016 May 28.
8
Improving identification of fall-related injuries in ambulatory care using statistical text mining.
Am J Public Health. 2015 Jun;105(6):1168-73. doi: 10.2105/AJPH.2014.302440. Epub 2015 Apr 16.
9
The Mayo Clinic Biobank: a building block for individualized medicine.
Mayo Clin Proc. 2013 Sep;88(9):952-62. doi: 10.1016/j.mayocp.2013.06.006.
10
Finding falls in ambulatory care clinical documents using statistical text mining.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):906-14. doi: 10.1136/amiajnl-2012-001334. Epub 2012 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验