Suppr超能文献

利用自然语言处理算法进行自动化图表审查,以预测哮喘指数。

Automated chart review utilizing natural language processing algorithm for asthma predictive index.

机构信息

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.

Asthma Epidemiology Research Unit, Mayo Clinic, Rochester, MN, USA.

出版信息

BMC Pulm Med. 2018 Feb 13;18(1):34. doi: 10.1186/s12890-018-0593-9.

Abstract

BACKGROUND

Thus far, no algorithms have been developed to automatically extract patients who meet Asthma Predictive Index (API) criteria from the Electronic health records (EHR) yet. Our objective is to develop and validate a natural language processing (NLP) algorithm to identify patients that meet API criteria.

METHODS

This is a cross-sectional study nested in a birth cohort study in Olmsted County, MN. Asthma status ascertained by manual chart review based on API criteria served as gold standard. NLP-API was developed on a training cohort (n = 87) and validated on a test cohort (n = 427). Criterion validity was measured by sensitivity, specificity, positive predictive value and negative predictive value of the NLP algorithm against manual chart review for asthma status. Construct validity was determined by associations of asthma status defined by NLP-API with known risk factors for asthma.

RESULTS

Among the eligible 427 subjects of the test cohort, 48% were males and 74% were White. Median age was 5.3 years (interquartile range 3.6-6.8). 35 (8%) had a history of asthma by NLP-API vs. 36 (8%) by abstractor with 31 by both approaches. NLP-API predicted asthma status with sensitivity 86%, specificity 98%, positive predictive value 88%, negative predictive value 98%. Asthma status by both NLP and manual chart review were significantly associated with the known asthma risk factors, such as history of allergic rhinitis, eczema, family history of asthma, and maternal history of smoking during pregnancy (p value < 0.05). Maternal smoking [odds ratio: 4.4, 95% confidence interval 1.8-10.7] was associated with asthma status determined by NLP-API and abstractor, and the effect sizes were similar between the reviews with 4.4 vs 4.2 respectively.

CONCLUSION

NLP-API was able to ascertain asthma status in children mining from EHR and has a potential to enhance asthma care and research through population management and large-scale studies when identifying children who meet API criteria.

摘要

背景

迄今为止,尚未开发出从电子健康记录(EHR)中自动提取符合哮喘预测指数(API)标准的患者的算法。我们的目标是开发和验证一种自然语言处理(NLP)算法,以识别符合 API 标准的患者。

方法

这是一项在明尼苏达州奥姆斯特德县的出生队列研究中进行的横断面研究。通过基于 API 标准的手动图表审查确定哮喘状态作为金标准。NLP-API 是在训练队列(n=87)上开发的,并在测试队列(n=427)上进行了验证。使用 NLP 算法对哮喘状态进行手动图表审查的灵敏度、特异性、阳性预测值和阴性预测值来衡量 NLP 算法的标准有效性。通过 NLP-API 定义的哮喘状态与已知哮喘危险因素的关联来确定结构有效性。

结果

在合格的 427 名测试队列受试者中,48%为男性,74%为白人。中位年龄为 5.3 岁(四分位间距为 3.6-6.8)。35 名(8%)通过 NLP-API 有哮喘病史,36 名(8%)通过记录员有哮喘病史,31 名(8%)通过两种方法均有哮喘病史。NLP-API 预测哮喘状态的灵敏度为 86%,特异性为 98%,阳性预测值为 88%,阴性预测值为 98%。通过 NLP 和手动图表审查确定的哮喘状态与已知的哮喘危险因素显著相关,如过敏性鼻炎、湿疹、哮喘家族史和母亲怀孕期间吸烟史(p 值<0.05)。母亲吸烟[比值比:4.4,95%置信区间 1.8-10.7]与通过 NLP-API 和记录员确定的哮喘状态相关,并且这两种审查的效应大小相似,分别为 4.4 和 4.2。

结论

NLP-API 能够从 EHR 中确定儿童的哮喘状态,并且通过人群管理和大规模研究来识别符合 API 标准的儿童,具有增强哮喘护理和研究的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70de/5812028/f365c217b648/12890_2018_593_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验