Suppr超能文献

基于网络和移动设备的心理干预预防围产期抑郁症的有效性:一项随机对照试验系统评价和荟萃分析的研究方案

Effectiveness of web-based and mobile-based psychological interventions to prevent perinatal depression: Study protocol for a systematic review and meta-analysis of randomized controlled trials.

作者信息

Motrico Emma, Conejo-Cerón Sonia, Martín-Gómez Carmen, Gómez Irene, Fonseca Ana, Moreno-Peral Patricia

机构信息

Department of Psychology, University Loyola Andalucía, Spain.

Prevention and Health Promotion Research Network (redIAPP), ISCIII, Spain.

出版信息

Internet Interv. 2021 Oct 22;26:100471. doi: 10.1016/j.invent.2021.100471. eCollection 2021 Dec.

Abstract

INTRODUCTION

Perinatal depression is one of the most common complications during pregnancy and one year following childbirth. A negative impact on the mental and physical health of women, their children, partners, or significant others has been associated with this disease. Web-based and Mobile-based psychological interventions can reduce the burden of the disease through prevention of new cases of depression. It is crucial to know the effectiveness of these interventions to implement them around the globe. This systematic review and meta-analysis aims to assess the effectiveness of Web-based and Mobile-based psychological interventions to prevent depression during the perinatal period.

METHOD AND ANALYSIS

A systematic review and meta-analysis will adhere to the PRISMA guidelines. Studies will be identified through MEDLINE, PsycINFO, Web of Science, Scopus, CINAHL, CENTRAL, Opengrey, Australian New Zealand Clinical Trial Registry, National Institute for Mental Health Research at the Australian National University, clinicaltrial.gov, beacon.anu.edu.au, and evidencebasedpsychotherapies.org from inception until 31 March 2021. We will also search the reference lists provided in relevant studies and reviews. The selection criteria will be as follows: 1) pregnant women or women who have given birth in the last 12 months and who were non-depressive at baseline; 2) Web-based and Mobile-Based psychological interventions; 3) comparators will be usual care, attention control, waiting list or no intervention; 4) outcomes will be the incidence of new cases of perinatal depression and/or the reduction of depressive symptoms as measured by validated instruments; and 5) the design of the studies will be randomized controlled trials. No restrictions regarding the year or language of publication will be considered. Pooled standardized mean differences and 95% confidence intervals will be calculated. The risk of bias of the studies will be assessed through the Cochrane Collaboration risk of bias 2.0 tool. Heterogeneity and publication bias will be estimated. Sensitivity and sub-group analyses will also be conducted. Random effects meta-regression will be performed.

ETHICS AND DISSEMINATION

As a systematic review, ethical approval is not required. The results from this study will be presented at international conferences and disseminated through peer-reviewed publications. Patients and the public will be involved in the dissemination plans.

PROSPERO REGISTRATION NUMBER

230,089 (submitted).

摘要

引言

围产期抑郁症是孕期及产后一年内最常见的并发症之一。这种疾病会对女性自身、其子女、伴侣或其他重要他人的身心健康产生负面影响。基于网络和移动设备的心理干预措施可通过预防新的抑郁症病例来减轻该疾病的负担。了解这些干预措施的有效性对于在全球范围内实施它们至关重要。本系统评价和荟萃分析旨在评估基于网络和移动设备的心理干预措施在围产期预防抑郁症的有效性。

方法与分析

系统评价和荟萃分析将遵循PRISMA指南。通过MEDLINE、PsycINFO、科学网、Scopus、CINAHL、CENTRAL、OpenGrey、澳大利亚新西兰临床试验注册库、澳大利亚国立大学国家心理健康研究所、clinicaltrial.gov、beacon.anu.edu.au和evidencebasedpsychotherapies.org检索从创刊至2021年3月31日的研究。我们还将搜索相关研究和综述中提供的参考文献列表。选择标准如下:1)孕妇或在过去12个月内分娩且基线时无抑郁症状的女性;2)基于网络和移动设备的心理干预措施;3)对照将为常规护理、注意力控制、等待名单或无干预;4)结局将为围产期抑郁症新病例的发生率和/或通过有效工具测量的抑郁症状减轻情况;5)研究设计将为随机对照试验。不考虑发表年份或语言的限制。将计算合并标准化均数差和95%置信区间。将通过Cochrane协作网偏倚风险2.0工具评估研究的偏倚风险。将估计异质性和发表偏倚。还将进行敏感性和亚组分析。将进行随机效应荟萃回归分析。

伦理与传播

作为一项系统评价,无需伦理批准。本研究结果将在国际会议上展示,并通过同行评审出版物传播。患者和公众将参与传播计划。

PROSPERO注册号:230,089(已提交)

相似文献

4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验