Suppr超能文献

非凸稀疏正则化在深度神经网络中的应用及其最优性。

Nonconvex Sparse Regularization for Deep Neural Networks and Its Optimality.

机构信息

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, U.S.A.

Department of Statistics, Seoul National University, Seoul 08826, Republic of Korea

出版信息

Neural Comput. 2022 Jan 14;34(2):476-517. doi: 10.1162/neco_a_01457.

Abstract

Recent theoretical studies proved that deep neural network (DNN) estimators obtained by minimizing empirical risk with a certain sparsity constraint can attain optimal convergence rates for regression and classification problems. However, the sparsity constraint requires knowing certain properties of the true model, which are not available in practice. Moreover, computation is difficult due to the discrete nature of the sparsity constraint. In this letter, we propose a novel penalized estimation method for sparse DNNs that resolves the problems existing in the sparsity constraint. We establish an oracle inequality for the excess risk of the proposed sparse-penalized DNN estimator and derive convergence rates for several learning tasks. In particular, we prove that the sparse-penalized estimator can adaptively attain minimax convergence rates for various nonparametric regression problems. For computation, we develop an efficient gradient-based optimization algorithm that guarantees the monotonic reduction of the objective function.

摘要

最近的理论研究证明,通过最小化具有一定稀疏性约束的经验风险获得的深度神经网络 (DNN) 估计器可以为回归和分类问题达到最优的收敛速度。然而,稀疏性约束要求了解真实模型的某些特性,而这些特性在实践中是不可用的。此外,由于稀疏性约束的离散性质,计算变得困难。在这封信中,我们提出了一种新的稀疏 DNN 惩罚估计方法,解决了稀疏性约束中存在的问题。我们为所提出的稀疏惩罚 DNN 估计器的超额风险建立了一个 oracle 不等式,并推导出了几种学习任务的收敛速度。特别是,我们证明了稀疏惩罚估计器可以自适应地为各种非参数回归问题达到最小最大收敛速度。对于计算,我们开发了一种有效的基于梯度的优化算法,保证目标函数的单调减少。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验