Liu Yijia, Li Lexin, Wang Xiao
Department of Statistics, Purdue University.
Department of Biostatistics and Epidemiology, University of California at Berkeley.
Can J Stat. 2022 Mar;50(1):59-85. doi: 10.1002/cjs.11666. Epub 2021 Nov 16.
In this article, we propose a new sparse neural ordinary differential equation (ODE) model to characterize flexible relations among multiple functional processes. We characterize the latent states of the functions via a set of ordinary differential equations. We then model the dynamic changes of the latent states using a deep neural network (DNN) with a specially designed architecture and a sparsity-inducing regularization. The new model is able to capture both nonlinear and sparse dependent relations among multivariate functions. We develop an efficient optimization algorithm to estimate the unknown weights for the DNN under the sparsity constraint. We establish both the algorithmic convergence and selection consistency, which constitute the theoretical guarantees of the proposed method. We illustrate the efficacy of the method through simulations and a gene regulatory network example.
在本文中,我们提出了一种新的稀疏神经常微分方程(ODE)模型,以刻画多个功能过程之间的灵活关系。我们通过一组常微分方程来刻画函数的潜在状态。然后,我们使用具有特殊设计架构和稀疏诱导正则化的深度神经网络(DNN)对潜在状态的动态变化进行建模。新模型能够捕捉多元函数之间的非线性和稀疏依赖关系。我们开发了一种高效的优化算法,以在稀疏约束下估计DNN的未知权重。我们建立了算法收敛性和选择一致性,这构成了所提方法的理论保证。我们通过模拟和一个基因调控网络示例来说明该方法的有效性。