Suppr超能文献

一种用于多个功能过程的非线性稀疏神经常微分方程模型。

A nonlinear sparse neural ordinary differential equation model for multiple functional processes.

作者信息

Liu Yijia, Li Lexin, Wang Xiao

机构信息

Department of Statistics, Purdue University.

Department of Biostatistics and Epidemiology, University of California at Berkeley.

出版信息

Can J Stat. 2022 Mar;50(1):59-85. doi: 10.1002/cjs.11666. Epub 2021 Nov 16.

Abstract

In this article, we propose a new sparse neural ordinary differential equation (ODE) model to characterize flexible relations among multiple functional processes. We characterize the latent states of the functions via a set of ordinary differential equations. We then model the dynamic changes of the latent states using a deep neural network (DNN) with a specially designed architecture and a sparsity-inducing regularization. The new model is able to capture both nonlinear and sparse dependent relations among multivariate functions. We develop an efficient optimization algorithm to estimate the unknown weights for the DNN under the sparsity constraint. We establish both the algorithmic convergence and selection consistency, which constitute the theoretical guarantees of the proposed method. We illustrate the efficacy of the method through simulations and a gene regulatory network example.

摘要

在本文中,我们提出了一种新的稀疏神经常微分方程(ODE)模型,以刻画多个功能过程之间的灵活关系。我们通过一组常微分方程来刻画函数的潜在状态。然后,我们使用具有特殊设计架构和稀疏诱导正则化的深度神经网络(DNN)对潜在状态的动态变化进行建模。新模型能够捕捉多元函数之间的非线性和稀疏依赖关系。我们开发了一种高效的优化算法,以在稀疏约束下估计DNN的未知权重。我们建立了算法收敛性和选择一致性,这构成了所提方法的理论保证。我们通过模拟和一个基因调控网络示例来说明该方法的有效性。

相似文献

3
Neural network for a class of sparse optimization with L-regularization.具有 L-正则化的一类稀疏优化的神经网络。
Neural Netw. 2022 Jul;151:211-221. doi: 10.1016/j.neunet.2022.03.033. Epub 2022 Apr 5.
6
Consistent Sparse Deep Learning: Theory and Computation.一致稀疏深度学习:理论与计算
J Am Stat Assoc. 2022;117(540):1981-1995. doi: 10.1080/01621459.2021.1895175. Epub 2021 Apr 20.
7
A hybrid neural ordinary differential equation model of the cardiovascular system.心血管系统的混合神经常微分方程模型。
J R Soc Interface. 2024 Mar;21(212):20230710. doi: 10.1098/rsif.2023.0710. Epub 2024 Mar 20.

本文引用的文献

1
Kernel Ordinary Differential Equations.核常微分方程
J Am Stat Assoc. 2022;117(540):1711-1725. doi: 10.1080/01621459.2021.1882466. Epub 2021 Apr 27.
2
Bayesian Neural Networks for Selection of Drug Sensitive Genes.用于选择药物敏感基因的贝叶斯神经网络
J Am Stat Assoc. 2018;113(523):955-972. doi: 10.1080/01621459.2017.1409122. Epub 2018 Jun 28.
3
Network Reconstruction From High-Dimensional Ordinary Differential Equations.基于高维常微分方程的网络重构
J Am Stat Assoc. 2017;112(520):1697-1707. doi: 10.1080/01621459.2016.1229197. Epub 2017 Aug 7.
7
Network reconstruction using nonparametric additive ODE models.使用非参数加法常微分方程模型进行网络重构。
PLoS One. 2014 Apr 14;9(4):e94003. doi: 10.1371/journal.pone.0094003. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验