Suppr超能文献

利用非接触式传感器实现手部震颤和运动迟缓的客观量化:一项系统综述。

Towards Objective Quantification of Hand Tremors and Bradykinesia Using Contactless Sensors: A Systematic Review.

作者信息

Garcia-Agundez Augusto, Eickhoff Carsten

机构信息

AI Lab, Brown Center for Biomedical Informatics, Brown University, Providence, RI, United States.

出版信息

Front Aging Neurosci. 2021 Oct 25;13:716102. doi: 10.3389/fnagi.2021.716102. eCollection 2021.

Abstract

Assessing the progression of movement disorders such as Parkinson's Disease (PD) is key in adjusting therapeutic interventions. However, current methods are still based on subjective factors such as visual observation, resulting in significant inter-rater variability on clinical scales such as UPDRS. Recent studies show the potential of sensor-based methods to address this limitation. The goal of this systematic review is to provide an up-to-date analysis of contactless sensor-based methods to estimate hand dexterity UPDRS scores in PD patients. Two hundred and twenty-four abstracts were screened and nine articles selected for analysis. Evidence obtained in a cumulative cohort of = 187 patients and 1, 385 samples indicates that contactless sensors, particularly the Leap Motion Controller (LMC), can be used to assess UPDRS hand motor tasks 3.4, 3.5, 3.6, 3.15, and 3.17, although accuracy varies. Early evidence shows that sensor-based methods have clinical potential and might, after refinement, complement, or serve as a support to subjective assessment procedures. Given the nature of UPDRS assessment, future studies should observe whether LMC classification error falls within inter-rater variability for clinician-measured UPDRS scores to validate its clinical utility. Conversely, variables relevant to LMC classification such as power spectral densities or movement opening and closing speeds could set the basis for the design of more objective expert systems to assess hand dexterity in PD.

摘要

评估帕金森病(PD)等运动障碍的进展情况对于调整治疗干预措施至关重要。然而,目前的方法仍基于视觉观察等主观因素,导致在诸如统一帕金森病评定量表(UPDRS)等临床量表上存在显著的评分者间差异。最近的研究显示了基于传感器的方法解决这一局限性的潜力。本系统评价的目的是对基于非接触式传感器的方法进行最新分析,以估计PD患者的手部灵巧性UPDRS评分。筛选了224篇摘要,选择了9篇文章进行分析。在总共187名患者和1385个样本的队列中获得的证据表明,非接触式传感器,特别是Leap Motion控制器(LMC),可用于评估UPDRS手部运动任务3.4、3.5、3.6、3.15和3.17,尽管准确性有所不同。早期证据表明,基于传感器的方法具有临床潜力,经过改进后可能补充或支持主观评估程序。鉴于UPDRS评估的性质,未来的研究应观察LMC分类误差是否落在临床医生测量的UPDRS评分的评分者间差异范围内,以验证其临床效用。相反,与LMC分类相关的变量,如功率谱密度或运动开合速度,可为设计更客观的专家系统以评估PD患者的手部灵巧性奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8a/8572888/9d428265f295/fnagi-13-716102-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验