Suppr超能文献

计算机视觉的敏锐洞察力:它能测量帕金森病的手指敲击运动迟缓吗?

The discerning eye of computer vision: Can it measure Parkinson's finger tap bradykinesia?

作者信息

Williams Stefan, Zhao Zhibin, Hafeez Awais, Wong David C, Relton Samuel D, Fang Hui, Alty Jane E

机构信息

University of Leeds, Leeds Institute of Health Science, Leeds, UK.

University of Manchester, Division of Informatics, Imaging & Data Sciences, Manchester, UK; Xi'an Jiatong University, School of Mechanical Engineering, Xi'an, China.

出版信息

J Neurol Sci. 2020 Sep 15;416:117003. doi: 10.1016/j.jns.2020.117003. Epub 2020 Jun 30.

Abstract

OBJECTIVE

The worldwide prevalence of Parkinson's disease is increasing. There is urgent need for new tools to objectively measure the condition. Existing methods to record the cardinal motor feature of the condition, bradykinesia, using wearable sensors or smartphone apps have not reached large-scale, routine use. We evaluate new computer vision (artificial intelligence) technology, DeepLabCut, as a contactless method to quantify measures related to Parkinson's bradykinesia from smartphone videos of finger tapping.

METHODS

Standard smartphone video recordings of 133 hands performing finger tapping (39 idiopathic Parkinson's patients and 30 controls) were tracked on a frame-by-frame basis with DeepLabCut. Objective computer measures of tapping speed, amplitude and rhythm were correlated with clinical ratings made by 22 movement disorder neurologists using the Modified Bradykinesia Rating Scale (MBRS) and Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS).

RESULTS

DeepLabCut reliably tracked and measured finger tapping in standard smartphone video. Computer measures correlated well with clinical ratings of bradykinesia (Spearman coefficients): -0.74 speed, 0.66 amplitude, -0.65 rhythm for MBRS; -0.56 speed, 0.61 amplitude, -0.50 rhythm for MDS-UPDRS; -0.69 combined for MDS-UPDRS. All p < .001.

CONCLUSION

New computer vision software, DeepLabCut, can quantify three measures related to Parkinson's bradykinesia from smartphone videos of finger tapping. Objective 'contactless' measures of standard clinical examinations were not previously possible with wearable sensors (accelerometers, gyroscopes, infrared markers). DeepLabCut requires only conventional video recording of clinical examination and is entirely 'contactless'. This next generation technology holds potential for Parkinson's and other neurological disorders with altered movements.

摘要

目的

帕金森病在全球的患病率正在上升。迫切需要新的工具来客观地评估这种疾病。现有的使用可穿戴传感器或智能手机应用程序记录该疾病主要运动特征——运动迟缓的方法尚未得到大规模的常规应用。我们评估了一种新的计算机视觉(人工智能)技术DeepLabCut,作为一种非接触式方法,用于从手指敲击的智能手机视频中量化与帕金森病运动迟缓相关的指标。

方法

使用DeepLabCut逐帧跟踪133只手进行手指敲击的标准智能手机视频记录(39例特发性帕金森病患者和30名对照)。敲击速度、幅度和节奏的客观计算机测量值与22名运动障碍神经科医生使用改良运动迟缓评定量表(MBRS)和运动障碍协会修订的统一帕金森病评定量表(MDS-UPDRS)进行的临床评分相关。

结果

DeepLabCut在标准智能手机视频中可靠地跟踪和测量了手指敲击。计算机测量值与运动迟缓的临床评分相关性良好(斯皮尔曼系数):MBRS的速度为-0.74,幅度为0.66,节奏为-0.65;MDS-UPDRS的速度为-0.56,幅度为0.61,节奏为-0.50;MDS-UPDRS综合评分为-0.69。所有p<0.001。

结论

新的计算机视觉软件DeepLabCut可以从手指敲击的智能手机视频中量化与帕金森病运动迟缓相关的三项指标。可穿戴传感器(加速度计、陀螺仪、红外标记)以前无法实现标准临床检查的客观“非接触式”测量。DeepLabCut只需要对临床检查进行常规视频记录,并且完全是“非接触式”的。这项下一代技术对帕金森病和其他有运动改变的神经系统疾病具有潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验