Suppr超能文献

使用多个惯性传感器对帕金森病患者的全身运动迟缓进行定量分析。

Quantification of whole-body bradykinesia in Parkinson's disease participants using multiple inertial sensors.

机构信息

Robarts Research Institute, London, ON, Canada.

Center for Research and Technology (CREATECH), Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.

出版信息

J Neurol Sci. 2018 Apr 15;387:157-165. doi: 10.1016/j.jns.2018.02.001. Epub 2018 Feb 2.

Abstract

Bradykinesia (slowness of movement) is a common motor symptom of Parkinson's disease (PD) that can severely affect quality of life for those living with the disease. Assessment and treatment of PD motor symptoms largely depends on clinical scales such as the Unified Parkinson's Disease Rating Scale (UPDRS). However, such clinical scales rely on the visual assessment by a human observer, naturally resulting in inter-rater variability. Although previous studies have developed objective means for measuring bradykinesia in PD patients, their evaluation was restricted by the type of movement and number of joints assessed. These studies failed to provide a more comprehensive, whole-body evaluation capable of measuring multiple joints simultaneously. This study utilizes wearable inertial measurement units (IMUs) to quantify whole-body movements, providing novel bradykinesia indices for walking (WBI) and standing up from a chair (sit-to-stand; SBI). The proposed bradykinesia indices include the joint angles at both upper and lower limbs and trunk motion to compute a complete, objective score for whole body bradykinesia. Thirty PD and 11 age-matched healthy control participants were recruited for the study. The participants performed two standard walking tasks that involved multiple body joints in the upper and lower limbs. The WBI and SBI successfully identified differences between control and PD participants. The indices also effectively identified differences within the PD population, distinguishing participants assessed with (ON) and without (OFF) levodopa; the gold-standard of treatment for PD. The goal of this study is to provide health professionals with an objective score for whole body bradykinesia by simultaneously measuring the upper and lower extremities along with truncal movement. This method demonstrates potential to be used in conjunction with current clinical standards for motor symptom assessment, and may also be promising for the remote assessment of PD patients and in cases where experienced clinicians may not be available. In conclusion, the intelligent use of this technology for the measurement of bradykinesia (among other symptoms) has vast implications for optimizing treatment in Parkinson's disease, ultimately leading to an improvement in quality of life.

摘要

运动徐缓(运动缓慢)是帕金森病(PD)的常见运动症状,会严重影响患者的生活质量。PD 运动症状的评估和治疗主要依赖于临床量表,如统一帕金森病评定量表(UPDRS)。然而,这些临床量表依赖于人类观察者的视觉评估,自然会导致评估者之间的差异。尽管先前的研究已经开发出用于测量 PD 患者运动徐缓的客观方法,但它们的评估受到所评估运动类型和关节数量的限制。这些研究未能提供更全面、能同时测量多个关节的全身评估方法。本研究利用可穿戴惯性测量单元(IMU)来量化全身运动,为步行(WBI)和从椅子上站起来(从坐下到站起;SBI)提供新的运动徐缓指数。所提出的运动徐缓指数包括上下肢关节角度和躯干运动,以计算全身运动徐缓的完整、客观评分。本研究招募了 30 名 PD 患者和 11 名年龄匹配的健康对照者。参与者完成了两项涉及上下肢多个关节的标准步行任务。WBI 和 SBI 成功地区分了对照组和 PD 组参与者之间的差异。这些指数也有效地在 PD 人群中识别出了差异,区分了接受(ON)和不接受(OFF)左旋多巴治疗的参与者;左旋多巴是 PD 的金标准治疗方法。本研究的目的是通过同时测量上下肢和躯干运动,为健康专业人员提供全身运动徐缓的客观评分。该方法有可能与当前的运动症状评估临床标准结合使用,也可能有望用于 PD 患者的远程评估以及经验丰富的临床医生可能无法提供帮助的情况。总之,这项技术在测量运动徐缓(以及其他症状)方面的智能应用对优化帕金森病的治疗具有重要意义,最终将提高患者的生活质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验