Suppr超能文献

球孢白僵菌ARSEF 2860分泌的未知蛋白质结构预测揭示了新的毒素样家族。

Prediction of secreted uncharacterized protein structures from Beauveria bassiana ARSEF 2860 unravels novel toxins-like families.

作者信息

Farag Peter F, Elsisi Aya A, Elabd Esraa W, Sadek Jana J, Mousa Nada H, Zaky Rawan M, Ahmed Sara M

机构信息

Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.

出版信息

Sci Rep. 2025 May 22;15(1):17747. doi: 10.1038/s41598-025-02618-3.

Abstract

Insecticides are toxic substances used to control a wide variety of agricultural insect pests. Most of these are chemicals in nature, and their increasing residues in soil, water, and fruits contribute to environmental pollution, chronic human illnesses, and the emergence of insecticide resistance phenomenon. In the context of a green environment, bioinsecticide metabolites, including proteins, are a safe alternative that mostly has selective toxicity to insects. Thus, this study aimed to predict and identify new toxin-like families through uncharacterized secreted proteins from one of the most potent entomopathogenic fungi, Beauveria bassiana ARSEF 2860, which was selected as a model. In this work, a total of 2483 amino acid sequences of uncharacterized proteins (Ups) were retrieved from the RefSeq database. Among these, 365 UPs were identified as secreted proteins using the SignalP web server. We implemented the integration of well-designed bioinformatic tools to characterize and anticipate their homologous similarities at the sequence (InterPro) and structural (AlphaFold2) levels. The structural function annotation of these proteins was predicted using DeepFRI. With 269 successfully predicted folds, we identified new putative families with pathogenesis functions related to toxins like Janus-faced atracotoxins (insecticidal spider toxin), Cry toxins (commercial insecticide from Bacillus thuringiensis), ARTs-like toxins, and other insecticidal toxins. Furthermore, some proteins that are not homologous to any known experimental data were functionally predicted as cation metal ion binding (Zn, Na, and Co) with potential toxicity. Collectively, computational structural genomics can be used to study host-pathogen interactions and predict novel families.

摘要

杀虫剂是用于控制多种农业害虫的有毒物质。其中大多数本质上是化学物质,它们在土壤、水和水果中残留量的增加导致了环境污染、人类慢性疾病以及抗杀虫剂现象的出现。在绿色环保的背景下,包括蛋白质在内的生物杀虫剂代谢产物是一种安全的替代品,对昆虫大多具有选择性毒性。因此,本研究旨在通过从最有效的昆虫病原真菌之一球孢白僵菌ARSEF 2860中未鉴定的分泌蛋白来预测和鉴定新的毒素样家族,该真菌被选作模型。在这项工作中,从RefSeq数据库中检索到了总共2483个未鉴定蛋白(Ups)的氨基酸序列。其中,使用SignalP网络服务器将365个UPs鉴定为分泌蛋白。我们运用精心设计的生物信息学工具进行整合,以在序列(InterPro)和结构(AlphaFold2)水平上表征并预测它们的同源相似性。使用DeepFRI预测这些蛋白的结构功能注释。通过成功预测的269个折叠结构,我们鉴定出了与毒素相关的具有致病功能的新推定家族,如两面性澳毒(杀虫蜘蛛毒素)、Cry毒素(来自苏云金芽孢杆菌的商业杀虫剂)、ARTs样毒素和其他杀虫毒素。此外,一些与任何已知实验数据都不同源的蛋白在功能上被预测为具有潜在毒性的阳离子金属离子结合蛋白(锌、钠和钴)。总体而言,计算结构基因组学可用于研究宿主 - 病原体相互作用并预测新的家族。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a70/12099005/eca6bbf44a3d/41598_2025_2618_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验