Suppr超能文献

在“新数字北极”中模拟俄罗斯远东高北极鹅(Anser fabalis,A. albifrons)换羽和育雏期间的行为。

Modeling Eastern Russian High Arctic Geese (Anser fabalis, A. albifrons) during moult and brood rearing in the 'New Digital Arctic'.

机构信息

Institute of Biological Problems of the North, Far East Branch, Russian Academy of Sciences, Magadan, Russia.

Institute of Biological Problems of the Cryolithozone, Siberian Branch, Russian Academy of Sciences, Yakutsk, Russia.

出版信息

Sci Rep. 2021 Nov 11;11(1):22051. doi: 10.1038/s41598-021-01595-7.

Abstract

Many polar species and habitats are now affected by man-made global climate change and underlying infrastructure. These anthropogenic forces have resulted in clear implications and many significant changes in the arctic, leading to the emergence of new climate, habitats and other issues including digital online infrastructure representing a 'New Artic'. Arctic grazers, like Eastern Russian migratory populations of Tundra Bean Goose Anser fabalis and Greater White-fronted Goose A. albifrons, are representative examples and they are affected along the entire flyway in East Asia, namely China, Japan and Korea. Here we present the best publicly-available long-term (24 years) digitized geographic information system (GIS) data for the breeding study area (East Yakutia and Chukotka) and its habitats with ISO-compliant metadata. Further, we used seven publicly available compiled Open Access GIS predictor layers to predict the distribution for these two species within the tundra habitats. Using BIG DATA we are able to improve on the ecological niche prediction inference for both species by focusing for the first time specifically on biological relevant population cohorts: post-breeding moulting non-breeders, as well as post-breeding parent birds with broods. To assure inference with certainty, we assessed it with 4 lines of evidence including alternative best-available open access field data from GBIF.org as well as occurrence data compiled from the literature. Despite incomplete data, we found a good model accuracy in support of our evidence for a robust inference of the species distributions. Our predictions indicate a strong publicly best-available relative index of occurrence (RIO). These results are based on the quantified ecological niche showing more realistic gradual occurrence patterns but which are not fully in agreement with the current strictly applied parsimonious flyway and species delineations. While our predictions are to be improved further, e.g. when synergetic data are made freely available, here we offer within data caveats the first open access model platform for fine-tuning and future predictions for this otherwise poorly represented region in times of a rapid changing industrialized 'New Arctic' with global repercussions.

摘要

许多极地物种和栖息地现在受到人为全球气候变化和基础设施的影响。这些人为因素导致了北极地区的明显影响和许多重大变化,导致了新的气候、栖息地和其他问题的出现,包括代表“新北极”的数字在线基础设施。北极食草动物,如东方俄罗斯迁徙的苔原豆雁 Anser fabalis 和大额雁 A. albifrons 种群,就是代表性的例子,它们在东亚的整个迁徙路线上都受到影响,即中国、日本和韩国。在这里,我们提供了最佳的公开可用的长期(24 年)数字化地理信息系统(GIS)数据,用于繁殖研究区域(东西伯利亚和楚科奇)及其栖息地,并附有符合 ISO 标准的元数据。此外,我们使用了七个公开提供的编译开放获取 GIS 预测层来预测这两个物种在苔原栖息地内的分布。通过大数据,我们能够通过首次专门关注生物相关的种群来提高这两个物种的生态位预测推断:繁殖后换羽的非繁殖者,以及繁殖后有雏鸟的亲鸟。为了确保推断的确定性,我们通过 4 条证据线进行了评估,包括来自 GBIF.org 的替代最佳开放获取实地数据以及从文献中编译的出现数据。尽管数据不完整,我们发现模型准确性较好,支持我们对物种分布进行稳健推断的证据。我们的预测表明,存在一个强大的公共最佳可用相对出现指数(RIO)。这些结果基于量化的生态位,显示出更现实的逐渐出现模式,但与当前严格应用的简约迁徙路线和物种划分不完全一致。虽然我们的预测还需要进一步改进,例如当协同数据免费提供时,但在这里,我们在数据警告中提供了第一个开放访问模型平台,用于在快速变化的工业化“新北极”时代对这一 otherwise poorly represented region 进行微调,并对未来进行预测,该地区受到全球影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0c2/8586028/7812b1241131/41598_2021_1595_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验