Suppr超能文献

OptCoNet:一种用于新冠病毒疾病自动诊断的优化卷积神经网络。

OptCoNet: an optimized convolutional neural network for an automatic diagnosis of COVID-19.

作者信息

Goel Tripti, Murugan R, Mirjalili Seyedali, Chakrabartty Deba Kumar

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, Assam 788010 India.

Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006 Australia.

出版信息

Appl Intell (Dordr). 2021;51(3):1351-1366. doi: 10.1007/s10489-020-01904-z. Epub 2020 Sep 21.

Abstract

The quick spread of coronavirus disease (COVID-19) has become a global concern and affected more than 15 million confirmed patients as of July 2020. To combat this spread, clinical imaging, for example, X-ray images, can be utilized for diagnosis. Automatic identification software tools are essential to facilitate the screening of COVID-19 using X-ray images. This paper aims to classify COVID-19, normal, and pneumonia patients from chest X-ray images. As such, an Optimized Convolutional Neural network (OptCoNet) is proposed in this work for the automatic diagnosis of COVID-19. The proposed OptCoNet architecture is composed of optimized feature extraction and classification components. The Grey Wolf Optimizer (GWO) algorithm is used to optimize the hyperparameters for training the CNN layers. The proposed model is tested and compared with different classification strategies utilizing an openly accessible dataset of COVID-19, normal, and pneumonia images. The presented optimized CNN model provides accuracy, sensitivity, specificity, precision, and F1 score values of 97.78%, 97.75%, 96.25%, 92.88%, and 95.25%, respectively, which are better than those of state-of-the-art models. This proposed CNN model can help in the automatic screening of COVID-19 patients and decrease the burden on medicinal services frameworks.

摘要

冠状病毒病(COVID-19)的迅速传播已成为全球关注的问题,截至2020年7月,确诊患者已超过1500万。为了应对这种传播,临床成像,例如X光图像,可用于诊断。自动识别软件工具对于利用X光图像筛查COVID-19至关重要。本文旨在从胸部X光图像中对COVID-19患者、正常人和肺炎患者进行分类。因此,本文提出了一种优化卷积神经网络(OptCoNet)用于COVID-19的自动诊断。所提出的OptCoNet架构由优化的特征提取和分类组件组成。灰狼优化器(GWO)算法用于优化训练CNN层的超参数。利用一个公开可用的COVID-19、正常人和肺炎图像数据集,对所提出的模型进行了测试,并与不同的分类策略进行了比较。所提出的优化CNN模型的准确率、灵敏度、特异性、精确率和F1分数分别为97.78%、97.75%、96.25%、92.88%和95.25%,优于现有模型。所提出的CNN模型有助于自动筛查COVID-19患者,并减轻医疗服务系统的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7727/7502308/1f4dd65fd77f/10489_2020_1904_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验