Department of Computer Science, COMSATS University, Islamabad Capital Territory, Islamabad, Pakistan.
Department of Computer Science & IT, Neelum Campus, The University of Azad Jammu and Kashmir, Athmuqam, Azad Kashmir, Pakistan.
PLoS One. 2024 Nov 12;19(11):e0310011. doi: 10.1371/journal.pone.0310011. eCollection 2024.
Deep learning and artificial intelligence offer promising tools for improving the accuracy and efficiency of diagnosing various lung conditions using portable chest x-rays (CXRs). This study explores this potential by leveraging a large dataset containing over 6,000 CXR images from publicly available sources. These images encompass COVID-19 cases, normal cases, and patients with viral or bacterial pneumonia. The research proposes a novel approach called "Enhancing COVID Prediction with ESN-MDFS" that utilizes a combination of an Extreme Smart Network (ESN) and a Mean Dropout Feature Selection Technique (MDFS). This study aimed to enhance multi-class lung condition detection in portable chest X-rays by combining static texture features with dynamic deep learning features extracted from a pre-trained VGG-16 model. To optimize performance, preprocessing, data imbalance, and hyperparameter tuning were meticulously addressed. The proposed ESN-MDFS model achieved a peak accuracy of 96.18% with an AUC of 1.00 in a six-fold cross-validation. Our findings demonstrate the model's superior ability to differentiate between COVID-19, bacterial pneumonia, viral pneumonia, and normal conditions, promising significant advancements in diagnostic accuracy and efficiency.
深度学习和人工智能为利用便携式胸部 X 光(CXR)提高诊断各种肺部疾病的准确性和效率提供了有前途的工具。本研究通过利用包含来自公开来源的超过 6000 张 CXR 图像的大型数据集来探索这种潜力。这些图像包括 COVID-19 病例、正常病例以及患有病毒性或细菌性肺炎的患者。该研究提出了一种名为“利用 ESN-MDFS 增强 COVID 预测”的新方法,该方法结合了极端智能网络(ESN)和平均辍学特征选择技术(MDFS)。本研究旨在通过将静态纹理特征与从预训练的 VGG-16 模型提取的动态深度学习特征相结合,提高便携式胸部 X 光片中多类肺部疾病的检测能力。为了优化性能,对预处理、数据不平衡和超参数调整进行了细致的处理。在六重交叉验证中,所提出的 ESN-MDFS 模型的峰值准确率达到 96.18%,AUC 为 1.00。我们的研究结果表明,该模型在区分 COVID-19、细菌性肺炎、病毒性肺炎和正常情况方面具有卓越的能力,有望在诊断准确性和效率方面取得重大进展。