Suppr超能文献

一种利用认知证据在YouTube上检测标题党视频的统一方法。

A unified approach for detection of Clickbait videos on YouTube using cognitive evidences.

作者信息

Varshney Deepika, Vishwakarma Dinesh Kumar

机构信息

Biometric Research Laboratory, Department of Information Technology, Delhi Technological University, Delhi, 110042 India.

出版信息

Appl Intell (Dordr). 2021;51(7):4214-4235. doi: 10.1007/s10489-020-02057-9. Epub 2021 Jan 2.

Abstract

Clickbait is one of the form of false content, purposely designed to attract the user's attention and make them curious to follow the link and read, view, or listen to the attached content. The teaser aim behind this is to exploit the curiosity gap by giving information within the short statement. Still, the given statement is not sufficient enough to satisfy the curiosity without clicking through the linked content and lure the user to get into the respective page via playing with human psychology and degrades the user experience. To counter this problem, we develop a Clickbait Video Detector (CVD) scheme. The scheme leverages to learn three sets of latent features based on User Profiling, Video-Content, and Human Consensus, these are further used to retrieve cognitive evidence for the detection of clickbait videos on YouTube. The first step is to extract audio from the videos, which is further transformed to textual data, and later on, it is utilized for the extraction of video content-based features. Secondly, the comments are analyzed, and features are extracted based on human responses/reactions over the posted content. Lastly, user profile based features are extracted. Finally, all these features are fed into the classifier. The proposed method is tested on the publicly available fake video corpus [FVC], [FVC-2018] dataset, and a self-generated misleading video dataset [MVD]. The achieved result is compared with other state-of-the-art methods and demonstrates superior performance.

摘要

标题党是虚假内容的一种形式,其蓄意设计以吸引用户的注意力,并使他们好奇地点击链接去阅读、观看或收听所附内容。其背后的诱导目的是通过在简短陈述中提供信息来利用好奇心缺口。然而,在不点击链接内容的情况下,所提供的陈述不足以满足好奇心,它通过玩弄人类心理来诱使用户进入相应页面,从而降低了用户体验。为了解决这个问题,我们开发了一种标题党视频检测器(CVD)方案。该方案利用基于用户画像、视频内容和人类共识来学习三组潜在特征,这些特征进一步用于检索认知证据,以检测YouTube上的标题党视频。第一步是从视频中提取音频,将其进一步转换为文本数据,随后用于提取基于视频内容的特征。其次,分析评论,并根据人类对发布内容的反应提取特征。最后,提取基于用户画像的特征。最后,将所有这些特征输入分类器。所提出的方法在公开可用的虚假视频语料库[FVC]、[FVC - 2018]数据集以及一个自行生成的误导性视频数据集[MVD]上进行了测试。将取得的结果与其他现有最先进方法进行比较,结果表明该方法具有卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a7/7778503/25ca1c723e80/10489_2020_2057_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验