Raza Ali, Younas Faizan, Siddiqui Hafeez Ur Rehman, Rustam Furqan, Villar Monica Gracia, Alvarado Eduardo Silva, Ashraf Imran
Department of Software Engineering, The University of Lahore, Lahore, Pakistan.
Department of Computer Science and Information Technology, The University of Lahore, Lahore, Pakistan.
Heliyon. 2024 Aug 10;10(16):e35812. doi: 10.1016/j.heliyon.2024.e35812. eCollection 2024 Aug 30.
Video content on the web platform has increased explosively during the past decade, thanks to the open access to Facebook, YouTube, etc. YouTube is the second-largest social media platform nowadays containing more than 37 million YouTube channels. YouTube revealed at a recent press event that 30,000 new content videos per hour and 720,000 per day are posted. There is a need for an advanced deep learning-based approach to categorize the huge database of YouTube videos. This study aims to develop an artificial intelligence-based approach to categorize YouTube videos. This study analyzes the textual information related to videos like titles, descriptions, user tags, etc. using YouTube exploratory data analysis (YEDA) and shows that such information can be potentially used to categorize videos. A deep convolutional neural network (DCNN) is designed to categorize YouTube videos with efficiency and high accuracy. In addition, recurrent neural network (RNN), and gated recurrent unit (GRU) are also employed for performance comparison. Moreover, logistic regression, support vector machines, decision trees, and random forest models are also used. A large dataset with 9 classes is used for experiments. Experimental findings indicate that the proposed DCNN achieves the highest receiver operating characteristics (ROC) area under the curve (AUC) score of 99% in the context of YouTube video categorization and 96% accuracy which is better than existing approaches. The proposed approach can be used to help YouTube users suggest relevant videos and sort them by video category.
在过去十年中,由于可以免费访问脸书、优兔等平台,网络平台上的视频内容呈爆炸式增长。优兔是当今第二大社交媒体平台,拥有超过3700万个优兔频道。优兔在最近的一次新闻发布会上透露,每小时有3万个新的内容视频发布,每天有72万个。需要一种先进的基于深度学习的方法来对优兔视频的庞大数据库进行分类。本研究旨在开发一种基于人工智能的方法来对优兔视频进行分类。本研究使用优兔探索性数据分析(YEDA)分析与视频相关的文本信息,如标题、描述、用户标签等,并表明这些信息可潜在地用于视频分类。设计了一种深度卷积神经网络(DCNN)来高效、高精度地对优兔视频进行分类。此外,还采用了循环神经网络(RNN)和门控循环单元(GRU)进行性能比较。此外,还使用了逻辑回归、支持向量机、决策树和随机森林模型。使用一个包含9个类别的大型数据集进行实验。实验结果表明,在优兔视频分类的背景下,所提出的DCNN实现了最高的曲线下接受者操作特征(ROC)面积(AUC)得分,为99%,准确率为96%,优于现有方法。所提出的方法可用于帮助优兔用户推荐相关视频并按视频类别进行排序。