Suppr超能文献

关于假新闻检测的3T综述:类型学、检测时间、分类法。

A review on fake news detection 3T's: typology, time of detection, taxonomies.

作者信息

Rastogi Shubhangi, Bansal Divya

机构信息

Punjab Engineering College (Deemed to be University), Chandigarh, India.

出版信息

Int J Inf Secur. 2023;22(1):177-212. doi: 10.1007/s10207-022-00625-3. Epub 2022 Nov 15.

Abstract

Fake news has become an industry on its own, where users paid to write fake news and create clickbait content to allure the audience. Apparently, the detection of fake news is a crucial problem and several studies have proposed machine-learning-based techniques to combat fake news. Existing surveys present the review of proposed solutions, while this survey presents several aspects that are required to be considered before designing an effective solution. To this aim, we provide a comprehensive overview of false news detection. The survey presents (1) a clarity to problem definition by explaining different types of false information (like fake news, rumor, clickbait, satire, and hoax) with real-life examples, (2) a list of actors involved in spreading false information, (3) actions taken by service providers, (4) a list of publicly available datasets for fake news in three different formats, i.e., texts, images, and videos, (5) a novel three-phase detection model based on the time of detection, (6) four different taxonomies to classify research based on new-fangled viewpoints in order to provide a succinct roadmap for future, and (7) key bibliometric indicators. In a nutshell, the survey focuses on three key aspects represented as the three T's: Typology of false information, Time of detection, and Taxonomies to classify research. Finally, by reviewing and summarizing several studies on fake news, we outline some potential research directions.

摘要

假新闻已经自成一个产业,在这个产业中,用户受雇撰写假新闻并创作吸引眼球的内容以吸引受众。显然,假新闻的检测是一个关键问题,并且已有多项研究提出了基于机器学习的技术来打击假新闻。现有调查对已提出的解决方案进行了综述,而本调查则阐述了在设计有效解决方案之前需要考虑的几个方面。为此,我们对虚假新闻检测进行了全面概述。该调查呈现了:(1)通过用实际例子解释不同类型的虚假信息(如假新闻、谣言、标题党、讽刺和恶作剧)来明确问题定义;(2)传播虚假信息所涉及的行为主体列表;(3)服务提供商采取的行动;(4)三种不同格式(即文本、图像和视频)的公开可用假新闻数据集列表;(5)一种基于检测时间的新颖的三阶段检测模型;(6)四种不同的分类法,以便根据新的观点对研究进行分类,从而为未来提供一个简洁的路线图;以及(7)关键的文献计量指标。简而言之,该调查聚焦于以三个“T”表示的三个关键方面:虚假信息的类型、检测时间以及对研究进行分类的分类法。最后,通过回顾和总结关于假新闻的多项研究,我们概述了一些潜在的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e4a/9664051/35728f0b2d55/10207_2022_625_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验