Awasthy Rahul, Malhotra Meetu, Seavers Michael L, Newman Mark
Data Science, Harrisburg University of Science and Technology, Harrisburg, PA, United States.
Front Digit Health. 2024 Jul 2;6:1379336. doi: 10.3389/fdgth.2024.1379336. eCollection 2024.
The primary objective of this study was to enhance the operational efficiency of the current healthcare system by proposing a quicker and more effective approach for healthcare providers to deliver services to individuals facing acute heart failure (HF) and concurrent medical conditions. The aim was to support healthcare staff in providing urgent services more efficiently by developing an automated decision-support Patient Prioritization (PP) Tool that utilizes a tailored machine learning (ML) model to prioritize HF patients with chronic heart conditions and concurrent comorbidities during Urgent Care Unit admission. The study applies key ML models to the PhysioNet dataset, encompassing hospital admissions and mortality records of heart failure patients at Zigong Fourth People's Hospital in Sichuan, China, between 2016 and 2019. In addition, the model outcomes for the PhysioNet dataset are compared with the Healthcare Cost and Utilization Project (HCUP) Maryland (MD) State Inpatient Data (SID) for 2014, a secondary dataset containing heart failure patients, to assess the generalizability of results across diverse healthcare settings and patient demographics. The ML models in this project demonstrate efficiencies surpassing 97.8% and specificities exceeding 95% in identifying HF patients at a higher risk and ranking them based on their mortality risk level. Utilizing this machine learning for the PP approach underscores risk assessment, supporting healthcare professionals in managing HF patients more effectively and allocating resources to those in immediate need, whether in hospital or telehealth settings.
本研究的主要目标是通过提出一种更快、更有效的方法,提高当前医疗系统的运营效率,使医疗服务提供者能够为面临急性心力衰竭(HF)和并发疾病的患者提供服务。目的是通过开发一种自动化决策支持患者优先级(PP)工具来支持医护人员更高效地提供紧急服务,该工具利用定制的机器学习(ML)模型,在急诊室入院时对患有慢性心脏病和并发疾病的HF患者进行优先级排序。该研究将关键的ML模型应用于PhysioNet数据集,该数据集涵盖了2016年至2019年期间中国四川省自贡市第四人民医院心力衰竭患者的住院和死亡记录。此外,将PhysioNet数据集的模型结果与2014年医疗成本和利用项目(HCUP)马里兰州(MD)州住院患者数据(SID)进行比较,后者是一个包含心力衰竭患者的二级数据集,以评估结果在不同医疗环境和患者人口统计学中的普遍性。该项目中的ML模型在识别高风险HF患者并根据其死亡风险水平进行排序方面,效率超过97.8%,特异性超过95%。将这种机器学习用于PP方法突出了风险评估,支持医疗专业人员更有效地管理HF患者,并将资源分配给急需的患者,无论是在医院还是远程医疗环境中。