Suppr超能文献

基于诊断的多媒体测试与自闭症谱系障碍社会人口学特征的人工智能和机器学习技术杂交:一项系统综述。

Diagnosis-Based Hybridization of Multimedical Tests and Sociodemographic Characteristics of Autism Spectrum Disorder Using Artificial Intelligence and Machine Learning Techniques: A Systematic Review.

作者信息

Alqaysi M E, Albahri A S, Hamid Rula A

机构信息

Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq.

Department of Medical Instruments Engineering Techniques, Al-Farahidi University, Baghdad 10021, Iraq.

出版信息

Int J Telemed Appl. 2022 Jul 1;2022:3551528. doi: 10.1155/2022/3551528. eCollection 2022.

Abstract

Autism spectrum disorder (ASD) is a complex neurobehavioral condition that begins in childhood and continues throughout life, affecting communication and verbal and behavioral skills. It is challenging to discover autism in the early stages of life, which prompted researchers to intensify efforts to reach the best solutions to treat this challenge by introducing artificial intelligence (AI) techniques and machine learning (ML) algorithms, which played an essential role in greatly assisting the medical and healthcare staff and trying to obtain the highest predictive results for autism spectrum disorder. This study is aimed at systematically reviewing the literature related to the criteria, including multimedical tests and sociodemographic characteristics in AI techniques and ML contributions. Accordingly, this study checked the Web of Science (WoS), Science Direct (SD), IEEE Xplore digital library, and Scopus databases. A set of 944 articles from 2017 to 2021 is collected to reveal a clear picture and better understand all the academic literature through a definitive collection of 40 articles based on our inclusion and exclusion criteria. The selected articles were divided based on similarity, objective, and aim evidence across studies. They are divided into two main categories: the first category is "diagnosis of ASD based on questionnaires and sociodemographic features" ( = 39). This category contains a subsection that consists of three categories: (a) early diagnosis of ASD towards analysis, (b) diagnosis of ASD towards prediction, and (c) diagnosis of ASD based on resampling techniques. The second category consists of "diagnosis ASD based on medical and family characteristic features" ( = 1). This multidisciplinary systematic review revealed the taxonomy, motivations, recommendations, and challenges of diagnosis ASD research in utilizing AI techniques and ML algorithms that need synergistic attention. Thus, this systematic review performs a comprehensive science mapping analysis and identifies the open issues that help accomplish the recommended solution of diagnosis ASD research. Finally, this study critically reviews the literature and attempts to address the diagnosis ASD research gaps in knowledge and highlights the available ASD datasets, AI techniques and ML algorithms, and the feature selection methods that have been collected from the final set of articles.

摘要

自闭症谱系障碍(ASD)是一种复杂的神经行为疾病,始于儿童期并持续终生,会影响沟通以及语言和行为技能。在生命早期发现自闭症具有挑战性,这促使研究人员加大力度,通过引入人工智能(AI)技术和机器学习(ML)算法来找到应对这一挑战的最佳解决方案,这些技术和算法在极大地协助医护人员并试图获得自闭症谱系障碍的最高预测结果方面发挥了重要作用。本研究旨在系统回顾与相关标准有关的文献,包括人工智能技术和机器学习贡献中的多种医学测试及社会人口统计学特征。因此,本研究检索了科学网(WoS)、科学Direct(SD)、IEEE Xplore数字图书馆和Scopus数据库。收集了2017年至2021年的944篇文章,以便通过基于我们的纳入和排除标准最终确定的40篇文章清晰呈现并更好地理解所有学术文献。所选文章根据研究间的相似性、目标和证据进行划分。它们分为两大类:第一类是“基于问卷和社会人口统计学特征的ASD诊断”(= 39)。此类包含一个子部分,该子部分由三个类别组成:(a)针对分析的ASD早期诊断,(b)针对预测的ASD诊断,以及(c)基于重采样技术的ASD诊断。第二类由“基于医学和家庭特征的ASD诊断”(= 1)组成。这项多学科系统评价揭示了在利用人工智能技术和机器学习算法进行ASD诊断研究中的分类法、动机、建议和挑战,这些都需要协同关注。因此,这项系统评价进行了全面的科学图谱分析,并确定了有助于实现ASD诊断研究推荐解决方案的未决问题。最后,本研究对文献进行了批判性回顾,试图解决ASD诊断研究中的知识空白,并突出从最终文章集中收集的可用ASD数据集、人工智能技术和机器学习算法以及特征选择方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f48/9270139/ba9ad9706b5b/IJTA2022-3551528.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验