Torres Lucas, Pante Eric, González-Solís Jacob, Viricel Amélia, Ribout Cécile, Zino Francis, MacKin Will, Precheur Carine, Tourmetz Julie, Calabrese Licia, Militão Teresa, Zango Laura, Shirihai Hadoram, Bretagnolle Vincent
Centre d'Etudes Biologiques de Chizé UMR 7372 CNRS - La Rochelle Université Beauvoir sur Niort France.
Laboratoire LIENSs UMR 7266 CNRS - La Rochelle Université La Rochelle France.
Ecol Evol. 2021 Oct 4;11(21):14960-14976. doi: 10.1002/ece3.8180. eCollection 2021 Nov.
Seabirds, particularly Procellariiformes, are highly mobile organisms with a great capacity for long dispersal, though simultaneously showing high philopatry, two conflicting life-history traits that may lead to contrasted patterns of genetic population structure. Landmasses were suggested to explain differentiation patterns observed in seabirds, but philopatry, isolation by distance, segregation between breeding and nonbreeding zones, and oceanographic conditions (sea surface temperatures) may also contribute to differentiation patterns. To our knowledge, no study has simultaneously contrasted the multiple factors contributing to the diversification of seabird species, especially in the gray zone of speciation. We conducted a multilocus phylogeographic study on a widespread seabird species complex, the little shearwater complex, showing highly homogeneous morphology, which led to considerable taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all extant populations from the Atlantic () and Indian Oceans (), that is, five nominal lineages from 13 populations, along with one population from the eastern Pacific Ocean (representing the lineage). We found sharp differentiation among populations separated by the African continent with both mitochondrial and nuclear markers, while only mitochondrial markers allowed characterizing the five nominal lineages. No differentiation could be detected within these five lineages, questioning the strong level of philopatry showed by these shearwaters. Finally, we propose that Atlantic populations likely originated from the Indian Ocean. Within the Atlantic, a stepping-stone process accounts for the current distribution. Based on our divergence time estimates, we suggest that the observed pattern of differentiation mostly resulted from historical and current variation in sea surface temperatures.
海鸟,尤其是鹱形目鸟类,是高度移动的生物,具有很强的长距离扩散能力,同时又表现出高度的恋巢性,这两种相互冲突的生活史特征可能导致遗传种群结构出现不同模式。有观点认为陆地可以解释海鸟中观察到的分化模式,但恋巢性、距离隔离、繁殖区与非繁殖区的隔离以及海洋学条件(海面温度)也可能对分化模式有所影响。据我们所知,尚无研究同时对比导致海鸟物种多样化的多种因素,尤其是在物种形成的灰色地带。我们对一个分布广泛的海鸟物种复合体——小鹱复合体进行了多基因座系统地理学研究,该复合体形态高度一致,这引发了大量的分类学争论。我们对来自大西洋()和印度洋()的所有现存种群,即13个种群中的五个命名谱系,以及来自东太平洋的一个种群(代表 谱系)的三个线粒体标记和六个核标记进行了测序。我们发现,线粒体和核标记均显示,被非洲大陆分隔的种群之间存在明显分化,而只有线粒体标记能够区分这五个命名谱系。在这五个谱系内部未检测到分化,这对这些小鹱所表现出的强烈恋巢性提出了质疑。最后,我们提出大西洋种群可能起源于印度洋。在大西洋内部,一个踏脚石过程解释了当前的分布情况。基于我们对分歧时间的估计,我们认为观察到的分化模式主要是由历史和当前海面温度的变化导致的。