Suppr超能文献

一个用于多传感器无人机检测的数据集。

A dataset for multi-sensor drone detection.

作者信息

Svanström Fredrik, Alonso-Fernandez Fernando, Englund Cristofer

机构信息

Air Defence Regiment, Swedish Armed Forces, Sweden.

Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad SE 301 18, Sweden.

出版信息

Data Brief. 2021 Oct 27;39:107521. doi: 10.1016/j.dib.2021.107521. eCollection 2021 Dec.

Abstract

The use of small and remotely controlled unmanned aerial vehicles (UAVs), referred to as drones, has increased dramatically in recent years, both for professional and recreative purposes. This goes in parallel with (intentional or unintentional) misuse episodes, with an evident threat to the safety of people or facilities [1]. As a result, the detection of UAV has also emerged as a research topic [2]. Most of the existing studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the employed dataset. The lack of proper UAV detection studies employing thermal infrared cameras is also acknowledged as an issue, despite its success in detecting other types of targets [2]. Beside, we have not found any previous study that addresses the detection task as a function of distance to the target. Sensor fusion is indicated as an open research issue as well to achieve better detection results in comparison to a single sensor, although research in this direction is scarce too [3], [4], [5], [6]. To help in counteracting the mentioned issues and allow fundamental studies with a common public benchmark, we contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files. The database includes three different drones, a small-sized model (Hubsan H107D+), a medium-sized drone (DJI Flame Wheel in quadcopter configuration), and a performance-grade model (DJI Phantom 4 Pro). It also includes other flying objects that can be mistakenly detected as drones, such as birds, airplanes or helicopters. In addition to using several different sensors, the number of classes is higher than in previous studies [4]. The video part contains 650 infrared and visible videos (365 IR and 285 visible) of drones, birds, airplanes and helicopters. Each clip is of ten seconds, resulting in a total of 203,328 annotated frames. The database is complemented with 90 audio files of the classes drones, helicopters and background noise. To allow studies as a function of the sensor-to-target distance, the dataset is divided into three categories (Close, Medium, Distant) according to the industry-standard Detect, Recognize and Identify (DRI) requirements [7], built on the Johnson criteria [8]. Given that the drones must be flown within visual range due to regulations, the largest sensor-to-target distance for a drone in the dataset is 200 m, and acquisitions are made in daylight. The data has been obtained at three airports in Sweden: Halmstad Airport (IATA code: HAD/ICAO code: ESMT), Gothenburg City Airport (GSE/ESGP) and Malmö Airport (MMX/ESMS). The acquisition sensors are mounted on a pan-tilt platform that steers the cameras to the objects of interest. All sensors and the platform are controlled with a standard laptop vis a USB hub.

摘要

近年来,小型遥控无人驾驶飞行器(UAV),即无人机,无论是用于专业还是娱乐目的,其使用量都急剧增加。这与(有意或无意的)滥用事件同时发生,对人员或设施的安全构成明显威胁[1]。因此,无人机检测也已成为一个研究课题[2]。现有的大多数无人机检测研究都未能明确采集设备的类型、无人机类型、检测范围或所使用的数据集。尽管热红外相机在检测其他类型目标方面取得了成功,但缺乏使用热红外相机进行适当的无人机检测研究也被认为是一个问题[2]。此外,我们尚未发现任何先前的研究将检测任务作为到目标距离的函数来处理。与单个传感器相比,为了获得更好的检测结果,传感器融合也被指出是一个开放的研究问题,尽管这方面的研究也很少[3,4,5,6]。为了帮助应对上述问题,并允许使用通用的公共基准进行基础研究,我们贡献了一个用于无人机检测的带注释的多传感器数据库,其中包括红外和可见光视频以及音频文件。该数据库包括三种不同的无人机,一种小型模型(Hubsan H107D+)、一种中型无人机(四旋翼配置的DJI Flame Wheel)和一种高性能级模型(DJI Phantom 4 Pro)。它还包括其他可能被误检测为无人机的飞行物体,如鸟类、飞机或直升机。除了使用几种不同的传感器外,类别数量也比以前的研究[4]更多。视频部分包含650个关于无人机、鸟类、飞机和直升机的红外和可见光视频(365个红外视频和285个可见光视频)。每个片段时长为十秒,总共产生203328个带注释的帧。该数据库还补充了90个关于无人机、直升机和背景噪声类别的音频文件。为了允许根据传感器到目标的距离进行研究,该数据集根据行业标准的检测、识别和鉴定(DRI)要求[7],基于约翰逊标准[8]分为三类(近距离、中距离、远距离)。鉴于由于规定无人机必须在可视范围内飞行,数据集中无人机的最大传感器到目标距离为200米,并且采集是在白天进行的。数据是在瑞典的三个机场获取的:哈尔姆斯塔德机场(国际航空运输协会代码:HAD/国际民航组织代码:ESMT)、哥德堡市机场(GSE/ESGP)和马尔默机场(MMX/ESMS)。采集传感器安装在一个云台平台上,该平台将摄像机转向感兴趣的物体。所有传感器和平台都通过一个标准笔记本电脑通过USB集线器进行控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19b8/8573135/a2793e16054a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验