Wisniewski Mariusz, Rana Zeeshan A, Petrunin Ivan
Digital Aviation Research and Technology Centre (DARTeC), Cranfield University, Cranfield MK43 0FQ, UK.
J Imaging. 2022 Aug 12;8(8):218. doi: 10.3390/jimaging8080218.
We present a convolutional neural network (CNN) that identifies drone models in real-life videos. The neural network is trained on synthetic images and tested on a real-life dataset of drone videos. To create the training and validation datasets, we show a method of generating synthetic drone images. Domain randomization is used to vary the simulation parameters such as model textures, background images, and orientation. Three common drone models are classified: DJI Phantom, DJI Mavic, and DJI Inspire. To test the performance of the neural network model, Anti-UAV, a real-life dataset of flying drones is used. The proposed method reduces the time-cost associated with manually labelling drones, and we prove that it is transferable to real-life videos. The CNN achieves an overall accuracy of 92.4%, a precision of 88.8%, a recall of 88.6%, and an f1 score of 88.7% when tested on the real-life dataset.
我们提出了一种卷积神经网络(CNN),用于在现实生活视频中识别无人机型号。该神经网络在合成图像上进行训练,并在无人机视频的现实生活数据集上进行测试。为了创建训练和验证数据集,我们展示了一种生成合成无人机图像的方法。领域随机化用于改变模拟参数,如模型纹理、背景图像和方向。对三种常见的无人机型号进行分类:大疆精灵、大疆御和大疆悟。为了测试神经网络模型的性能,使用了一个现实生活中的飞行无人机数据集——反无人机数据集。所提出的方法减少了与手动标记无人机相关的时间成本,并且我们证明了它可以转移到现实生活视频中。当在现实生活数据集上进行测试时,该CNN的总体准确率为92.4%,精确率为88.8%,召回率为88.6%,F1分数为88.7%。