Suppr超能文献

基于合成数据训练的卷积神经网络的无人机模型分类

Drone Model Classification Using Convolutional Neural Network Trained on Synthetic Data.

作者信息

Wisniewski Mariusz, Rana Zeeshan A, Petrunin Ivan

机构信息

Digital Aviation Research and Technology Centre (DARTeC), Cranfield University, Cranfield MK43 0FQ, UK.

出版信息

J Imaging. 2022 Aug 12;8(8):218. doi: 10.3390/jimaging8080218.

Abstract

We present a convolutional neural network (CNN) that identifies drone models in real-life videos. The neural network is trained on synthetic images and tested on a real-life dataset of drone videos. To create the training and validation datasets, we show a method of generating synthetic drone images. Domain randomization is used to vary the simulation parameters such as model textures, background images, and orientation. Three common drone models are classified: DJI Phantom, DJI Mavic, and DJI Inspire. To test the performance of the neural network model, Anti-UAV, a real-life dataset of flying drones is used. The proposed method reduces the time-cost associated with manually labelling drones, and we prove that it is transferable to real-life videos. The CNN achieves an overall accuracy of 92.4%, a precision of 88.8%, a recall of 88.6%, and an f1 score of 88.7% when tested on the real-life dataset.

摘要

我们提出了一种卷积神经网络(CNN),用于在现实生活视频中识别无人机型号。该神经网络在合成图像上进行训练,并在无人机视频的现实生活数据集上进行测试。为了创建训练和验证数据集,我们展示了一种生成合成无人机图像的方法。领域随机化用于改变模拟参数,如模型纹理、背景图像和方向。对三种常见的无人机型号进行分类:大疆精灵、大疆御和大疆悟。为了测试神经网络模型的性能,使用了一个现实生活中的飞行无人机数据集——反无人机数据集。所提出的方法减少了与手动标记无人机相关的时间成本,并且我们证明了它可以转移到现实生活视频中。当在现实生活数据集上进行测试时,该CNN的总体准确率为92.4%,精确率为88.8%,召回率为88.6%,F1分数为88.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/9410072/99560f7b1271/jimaging-08-00218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验