Suppr超能文献

无人机检测与分类技术的进展与挑战:最新综述

Advances and Challenges in Drone Detection and Classification Techniques: A State-of-the-Art Review.

作者信息

Seidaliyeva Ulzhalgas, Ilipbayeva Lyazzat, Taissariyeva Kyrmyzy, Smailov Nurzhigit, Matson Eric T

机构信息

Department of Electronics, Telecommunications and Space Technologies, Satbayev University, Almaty 050013, Kazakhstan.

Department of Radio Engineering, Electronics and Telecommunications, International IT University, Almaty 050040, Kazakhstan.

出版信息

Sensors (Basel). 2023 Dec 26;24(1):125. doi: 10.3390/s24010125.

Abstract

The fast development of unmanned aerial vehicles (UAVs), commonly known as drones, has brought a unique set of opportunities and challenges to both the civilian and military sectors. While drones have proven useful in sectors such as delivery, agriculture, and surveillance, their potential for abuse in illegal airspace invasions, privacy breaches, and security risks has increased the demand for improved detection and classification systems. This state-of-the-art review presents a detailed overview of current improvements in drone detection and classification techniques: highlighting novel strategies used to address the rising concerns about UAV activities. We investigate the threats and challenges faced due to drones' dynamic behavior, size and speed diversity, battery life, etc. Furthermore, we categorize the key detection modalities, including radar, radio frequency (RF), acoustic, and vision-based approaches, and examine their distinct advantages and limitations. The research also discusses the importance of sensor fusion methods and other detection approaches, including wireless fidelity (Wi-Fi), cellular, and Internet of Things (IoT) networks, for improving the accuracy and efficiency of UAV detection and identification.

摘要

无人驾驶飞行器(UAVs),通常被称为无人机的快速发展,给民用和军事领域都带来了一系列独特的机遇和挑战。虽然无人机在诸如送货、农业和监视等领域已被证明有用,但其在非法入侵空域、侵犯隐私和安全风险方面被滥用的可能性增加了对改进检测和分类系统的需求。这篇前沿综述详细概述了无人机检测和分类技术的当前改进:突出了用于应对对无人机活动日益增长的担忧的新策略。我们研究了由于无人机的动态行为、尺寸和速度多样性、电池寿命等所面临的威胁和挑战。此外,我们对关键检测方式进行了分类,包括雷达、射频(RF)、声学和基于视觉的方法,并考察了它们各自的优点和局限性。该研究还讨论了传感器融合方法和其他检测方法的重要性,包括无线保真(Wi-Fi)、蜂窝和物联网(IoT)网络,以提高无人机检测和识别的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4533/10780901/af75f16cb339/sensors-24-00125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验