Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Institut du Cerveau - Paris Brain Institute - ICM, Paris 75013, France.
Am J Hum Genet. 2021 Dec 2;108(12):2336-2353. doi: 10.1016/j.ajhg.2021.10.009. Epub 2021 Nov 11.
Knockoff-based methods have become increasingly popular due to their enhanced power for locus discovery and their ability to prioritize putative causal variants in a genome-wide analysis. However, because of the substantial computational cost for generating knockoffs, existing knockoff approaches cannot analyze millions of rare genetic variants in biobank-scale whole-genome sequencing and whole-genome imputed datasets. We propose a scalable knockoff-based method for the analysis of common and rare variants across the genome, KnockoffScreen-AL, that is applicable to biobank-scale studies with hundreds of thousands of samples and millions of genetic variants. The application of KnockoffScreen-AL to the analysis of Alzheimer disease (AD) in 388,051 WG-imputed samples from the UK Biobank resulted in 31 significant loci, including 14 loci that are missed by conventional association tests on these data. We perform replication studies in an independent meta-analysis of clinically diagnosed AD with 94,437 samples, and additionally leverage single-cell RNA-sequencing data with 143,793 single-nucleus transcriptomes from 17 control subjects and AD-affected individuals, and proteomics data from 735 control subjects and affected indviduals with AD and related disorders to validate the genes at these significant loci. These multi-omics analyses show that 79.1% of the proximal genes at these loci and 76.2% of the genes at loci identified only by KnockoffScreen-AL exhibit at least suggestive signal (p < 0.05) in the scRNA-seq or proteomics analyses. We highlight a potentially causal gene in AD progression, EGFR, that shows significant differences in expression and protein levels between AD-affected individuals and healthy control subjects.
基于假冒者的方法由于其在发现基因座方面的增强能力以及在全基因组分析中优先考虑推定的因果变异的能力而变得越来越流行。然而,由于生成假冒者的计算成本很高,现有的假冒者方法无法分析生物库规模的全基因组测序和全基因组推断数据集的数百万个罕见遗传变异。我们提出了一种可扩展的基于假冒者的方法,用于分析基因组中的常见和罕见变异,称为 KnockoffScreen-AL,它适用于具有数十万样本和数百万个遗传变异的生物库规模研究。将 KnockoffScreen-AL 应用于来自英国生物库的 388,051 个 WG 推断样本的阿尔茨海默病(AD)分析,得到了 31 个显著基因座,其中包括 14 个在这些数据上的常规关联测试中遗漏的基因座。我们在一项独立的 AD 临床诊断的荟萃分析中进行了复制研究,样本量为 94,437,此外还利用单细胞 RNA 测序数据和来自 17 个对照和 AD 受影响个体的 143,793 个单核转录组以及来自 735 个对照和 AD 受影响个体的蛋白质组学数据来验证这些显著基因座上的基因。这些多组学分析表明,这些基因座上近端基因的 79.1%和仅通过 KnockoffScreen-AL 鉴定的基因座上基因的 76.2%在 scRNA-seq 或蛋白质组学分析中至少表现出暗示性信号(p < 0.05)。我们强调了 AD 进展中的一个潜在因果基因 EGFR,它在 AD 受影响个体和健康对照个体之间的表达和蛋白质水平存在显著差异。