Department of Biostatistics, Columbia University, New York, NY, USA.
Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Genome Biol. 2023 Feb 13;24(1):24. doi: 10.1186/s13059-023-02864-6.
We propose BIGKnock (BIobank-scale Gene-based association test via Knockoffs), a computationally efficient gene-based testing approach for biobank-scale data, that leverages long-range chromatin interaction data, and performs conditional genome-wide testing via knockoffs. BIGKnock can prioritize causal genes over proxy associations at a locus. We apply BIGKnock to the UK Biobank data with 405,296 participants for multiple binary and quantitative traits, and show that relative to conventional gene-based tests, BIGKnock produces smaller sets of significant genes that contain the causal gene(s) with high probability. We further illustrate its ability to pinpoint potential causal genes at [Formula: see text] of the associated loci.
我们提出了 BIGKnock(通过置换检验进行生物银行规模的基于基因的关联测试),这是一种针对生物银行规模数据的计算高效的基于基因的测试方法,利用长程染色质相互作用数据,并通过置换检验进行条件全基因组测试。BIGKnock 可以在基因座上优先考虑因果基因而不是代理关联。我们将 BIGKnock 应用于 UK Biobank 数据,该数据包含 405296 名参与者的多种二分类和定量性状,结果表明,与传统的基于基因的测试相比,BIGKnock 产生的显著基因集合更小,其中包含因果基因的概率很高。我们进一步说明了它在关联基因座的 [Formula: see text] 处确定潜在因果基因的能力。
Proc Natl Acad Sci U S A. 2021-11-23
Nat Genet. 2018-10-22
PLoS Genet. 2023-12
Diagnostics (Basel). 2023-2-16
Hum Genet. 2022-8
Proc Natl Acad Sci U S A. 2021-11-23