Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Anaesthetics, Intensive Care and Pain Medicine, Cwm Taf Morgannwg University Health Board, Llantrisant CF72 8XR, United Kingdom.
School of Pharmacy, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand; School of Psychology, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand.
Neuroimage. 2021 Dec 15;245:118659. doi: 10.1016/j.neuroimage.2021.118659. Epub 2021 Nov 9.
Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, an α2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propofol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields (VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi-sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects and may be used to explore mechanisms of other anaesthetic drugs on human consciousness.
研究皮质振荡的变化可以帮助阐明受体生理学与麻醉药物临床效果之间的机制联系。丙泊酚是一种 GABA 能药物,对视觉皮质活动产生不同的影响:增加诱导的伽马带反应(GBR),同时减少诱发反应。右美托咪定,一种 α2-肾上腺素能激动剂,在机制和临床方面与 GABA 能镇静剂不同,因为它可以在深度镇静下更容易唤醒,并且认知副作用较小。在这里,我们使用脑磁图(MEG)来描述和比较 GABA 能(丙泊酚)和非 GABA 能(右美托咪定)镇静对视觉和运动皮质振荡的影响。16 名男性参与者接受丙泊酚和右美托咪定的靶控输注,在安慰剂对照、交叉研究中产生轻度镇静。在一项联合视觉运动任务中收集了 MEG 数据。主要发现是丙泊酚显著增强了视觉刺激诱导的 GBR(振幅增加 44%),而右美托咪定则降低了它(40%)。丙泊酚还降低了 Mv100(视觉 M100)(27%)和 Mv150(52%)视觉诱发电位(VEF)的振幅,而右美托咪定对这些没有影响。在运动任务中,两种药物都没有对运动相关伽马同步性(MRGS)、运动相关β去同步化(MRBD)或 Mm100(运动相关 M100)运动相关诱发电位(MEF)产生任何显著影响,尽管右美托咪定使 Mm300 变慢。右美托咪定增加(92%)运动后β同步/反弹(PMBR)功率,而丙泊酚降低(70%,统计学上无显著性差异)。总体而言,在等效镇静剂量下,右美托咪定和丙泊酚对视觉诱导的 GBR、VEF、PMBR 和 MEF 产生相反的影响。这些发现为这些镇静药物的已知受体生理学与其已知的临床效果之间提供了一种机制联系,并可用于探索其他麻醉药物对人类意识的作用机制。