Penacchio Olivier, Otazu Xavier, Wilkins Arnold J, Haigh Sarah M
Department of Computer Science, Universitat Autònoma de Barcelona, Bellaterra, Spain.
Computer Vision Center, Universitat Autònoma de Barcelona, Bellaterra, Spain.
Front Neurosci. 2023 Jul 20;17:1200661. doi: 10.3389/fnins.2023.1200661. eCollection 2023.
Much of the neural machinery of the early visual cortex, from the extraction of local orientations to contextual modulations through lateral interactions, is thought to have developed to provide a sparse encoding of contour in natural scenes, allowing the brain to process efficiently most of the visual scenes we are exposed to. Certain visual stimuli, however, cause visual stress, a set of adverse effects ranging from simple discomfort to migraine attacks, and epileptic seizures in the extreme, all phenomena linked with an excessive metabolic demand. The theory of efficient coding suggests a link between excessive metabolic demand and images that deviate from natural statistics. Yet, the mechanisms linking energy demand and image spatial content in discomfort remain elusive. Here, we used theories of visual coding that link image spatial structure and brain activation to characterize the response to images observers reported as uncomfortable in a biologically based neurodynamic model of the early visual cortex that included excitatory and inhibitory layers to implement contextual influences. We found three clear markers of aversive images: a larger overall activation in the model, a less sparse response, and a more unbalanced distribution of activity across spatial orientations. When the ratio of excitation over inhibition was increased in the model, a phenomenon hypothesised to underlie interindividual differences in susceptibility to visual discomfort, the three markers of discomfort progressively shifted toward values typical of the response to uncomfortable stimuli. Overall, these findings propose a unifying mechanistic explanation for why there are differences between images and between observers, suggesting how visual input and idiosyncratic hyperexcitability give rise to abnormal brain responses that result in visual stress.
早期视觉皮层的许多神经机制,从局部方向的提取到通过侧向相互作用进行的上下文调制,被认为是为了在自然场景中提供轮廓的稀疏编码而发展起来的,这使得大脑能够有效地处理我们所接触到的大部分视觉场景。然而,某些视觉刺激会导致视觉应激,这是一系列从简单不适到偏头痛发作,甚至在极端情况下引发癫痫发作的不良反应,所有这些现象都与过度的代谢需求有关。高效编码理论表明,过度的代谢需求与偏离自然统计规律的图像之间存在联系。然而,在不适情况下,将能量需求与图像空间内容联系起来的机制仍然难以捉摸。在这里,我们使用将图像空间结构与大脑激活联系起来的视觉编码理论,在一个基于生物学的早期视觉皮层神经动力学模型中,对观察者报告为不舒服的图像的反应进行表征,该模型包括兴奋性和抑制性层以实现上下文影响。我们发现了厌恶图像的三个明显标志:模型中更大的整体激活、更不稀疏的反应以及跨空间方向的活动分布更不均衡。当模型中兴奋与抑制的比例增加时(这一现象被假设为个体对视觉不适易感性差异的基础),不适的三个标志逐渐向对不舒服刺激反应的典型值转变。总体而言,这些发现为图像之间以及观察者之间存在差异的原因提出了一个统一的机理解释,表明视觉输入和个体特异的过度兴奋性如何导致异常的大脑反应,从而产生视觉应激。