Suppr超能文献

阴道病原体的中心碳代谢、钠动力电子传递和铵形成

Central Carbon Metabolism, Sodium-Motive Electron Transfer, and Ammonium Formation by the Vaginal Pathogen .

机构信息

Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany.

HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599 Stuttgart, Germany.

出版信息

Int J Mol Sci. 2021 Nov 3;22(21):11925. doi: 10.3390/ijms222111925.

Abstract

Replacement of the dominated vaginal microbiome by a mixed bacterial population including is associated with bacterial vaginosis (BV). To understand the impact of on this microbiome, its growth requirements and mode of energy production were studied. Anoxic growth with glucose depended on CO and resulted in succinate formation, indicating phosphoenolpyruvate carboxylation and fumarate reduction as critical steps. The reductive branch of fermentation relied on two highly active, membrane-bound enzymes, namely the quinol:fumarate reductase (QFR) and Na-translocating NADH:quinone oxidoreductase (NQR). Both enzymes were characterized by activity measurements, in-gel fluorography, and VIS difference spectroscopy, and the Na-dependent build-up of a transmembrane voltage was demonstrated. NQR is a potential drug target for BV treatment since it is neither found in humans nor in . In , the highly active enzymes L-asparaginase and aspartate ammonia lyase catalyze the conversion of asparagine to the electron acceptor fumarate. However, the by-product ammonium is highly toxic. It has been proposed that depends on ammonium-utilizing , another typical pathogen associated with BV, and provides key nutrients to it. The product pattern of growing on glucose in the presence of mixed amino acids substantiates this notion.

摘要

被混合细菌种群(包括)取代的主导性阴道微生物群与细菌性阴道病(BV)有关。为了了解在这种微生物群中的作用,研究了其生长要求和能量产生方式。在缺氧条件下,利用葡萄糖的生长依赖于 CO,并导致琥珀酸的形成,表明磷酸烯醇丙酮酸羧化和延胡索酸还原是关键步骤。发酵的还原分支依赖于两种高度活跃的膜结合酶,即醌:延胡索酸还原酶(QFR)和 Na 转运 NADH:醌氧化还原酶(NQR)。两种酶均通过活性测量、凝胶荧光法和 VIS 差光谱法进行了表征,并证明了 Na 依赖性跨膜电压的建立。NQR 是 BV 治疗的潜在药物靶点,因为它既不存在于人类中,也不存在于 中。在 中,高度活跃的酶天冬酰胺酶和天冬氨酸氨裂解酶催化天冬酰胺转化为电子受体延胡索酸。然而,副产物铵非常有毒。有人提出, 依赖于铵利用菌,另一种与 BV 相关的典型病原体,并为其提供关键营养素。在混合氨基酸存在下, 利用葡萄糖生长的产物模式证实了这一观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50b8/8585091/c3a4bce5ba8f/ijms-22-11925-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验