Suppr超能文献

基于 LSTM 的信号到信号翻译的仅用光容积脉搏波描记术的连续血压估计。

Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation.

机构信息

Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan.

Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.

出版信息

Sensors (Basel). 2021 Apr 23;21(9):2952. doi: 10.3390/s21092952.

Abstract

Monitoring continuous BP signal is an important issue, because blood pressure (BP) varies over days, minutes, or even seconds for short-term cases. Most of photoplethysmography (PPG)-based BP estimation methods are susceptible to noise and only provides systolic blood pressure (SBP) and diastolic blood pressure (DBP) prediction. Here, instead of estimating a discrete value, we focus on different perspectives to estimate the whole waveform of BP. We propose a novel deep learning model to learn how to perform signal-to-signal translation from PPG to arterial blood pressure (ABP). Furthermore, using a raw PPG signal only as the input, the output of the proposed model is a continuous ABP signal. Based on the translated ABP signal, we extract the SBP and DBP values accordingly to ease the comparative evaluation. Our prediction results achieve average absolute error under 5 mmHg, with 70% confidence for SBP and 95% confidence for DBP without complex feature engineering. These results fulfill the standard from Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) with grade A. From the results, we believe that our model is applicable and potentially boosts the accuracy of an effective signal-to-signal continuous blood pressure estimation.

摘要

监测连续血压信号是一个重要的问题,因为血压(BP)在短期情况下会在数天、数分钟甚至数秒内发生变化。大多数基于光电容积脉搏波(PPG)的血压估计方法易受噪声影响,只能提供收缩压(SBP)和舒张压(DBP)预测。在这里,我们不估计离散值,而是从不同角度关注估计整个血压波形。我们提出了一种新的深度学习模型,从 PPG 学习如何执行信号到信号的转换,以得到动脉血压(ABP)。此外,仅使用原始 PPG 信号作为输入,所提出模型的输出是连续的 ABP 信号。基于转换后的 ABP 信号,我们相应地提取 SBP 和 DBP 值,以方便进行比较评估。我们的预测结果在平均绝对误差低于 5mmHg 时达到,SBP 的置信度为 70%,DBP 的置信度为 95%,无需复杂的特征工程。这些结果满足了医疗器械促进协会(AAMI)和英国高血压学会(BHS)的标准,等级为 A。从结果来看,我们相信我们的模型是适用的,并有可能提高有效的信号到信号连续血压估计的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c82/8122812/458c6c1c7ca8/sensors-21-02952-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验