Faculty of Computing, Universiti Malaysia Pahang (UMP), Gambang 26600, Pahang, Malaysia.
Centre for Data Science and Artificial Intelligence (Data Science Centre), Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia.
Sensors (Basel). 2021 Nov 2;21(21):7306. doi: 10.3390/s21217306.
Handwriting recognition refers to recognizing a handwritten input that includes character(s) or digit(s) based on an image. Because most applications of handwriting recognition in real life contain sequential text in various languages, there is a need to develop a dynamic handwriting recognition system. Inspired by the neuroevolutionary technique, this paper proposes a Dynamically Configurable Convolutional Recurrent Neural Network (DC-CRNN) for the handwriting recognition sequence modeling task. The proposed DC-CRNN is based on the Salp Swarm Optimization Algorithm (SSA), which generates the optimal structure and hyperparameters for Convolutional Recurrent Neural Networks (CRNNs). In addition, we investigate two types of encoding techniques used to translate the output of optimization to a CRNN recognizer. Finally, we proposed a novel hybridized SSA with Late Acceptance Hill-Climbing (LAHC) to improve the exploitation process. We conducted our experiments on two well-known datasets, IAM and IFN/ENIT, which include both the Arabic and English languages. The experimental results have shown that LAHC significantly improves the SSA search process. Therefore, the proposed DC-CRNN outperforms the handcrafted CRNN methods.
手写识别是指基于图像识别手写输入的字符或数字。由于现实生活中手写识别的大多数应用都包含各种语言的连续文本,因此需要开发动态手写识别系统。受神经进化技术的启发,本文提出了一种用于手写识别序列建模任务的动态可配置卷积递归神经网络(DC-CRNN)。所提出的 DC-CRNN 基于沙蚕群优化算法(SSA),该算法为卷积递归神经网络(CRNN)生成最佳结构和超参数。此外,我们研究了两种用于将优化的输出转换为 CRNN 识别器的编码技术。最后,我们提出了一种新的混合 SSA 与后期接受爬山(LAHC),以改善开发过程。我们在两个著名的数据集 IAM 和 IFN/ENIT 上进行了实验,其中包括阿拉伯语和英语。实验结果表明,LAHC 显著改善了 SSA 的搜索过程。因此,所提出的 DC-CRNN 优于手工制作的 CRNN 方法。