Suppr超能文献

一种用于蒙乃尔400合金等离子弧切割智能建模与优化的自适应神经模糊推理系统-人工蜂群算法混合方法

A Hybrid Approach of ANFIS-Artificial Bee Colony Algorithm for Intelligent Modeling and Optimization of Plasma Arc Cutting on Monel™ 400 Alloy.

作者信息

Siva Kumar Mahalingam, Rajamani Devaraj, Abouel Nasr Emad, Balasubramanian Esakki, Mohamed Hussein, Astarita Antonello

机构信息

Centre for Autonomous System Research, Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India.

Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.

出版信息

Materials (Basel). 2021 Oct 25;14(21):6373. doi: 10.3390/ma14216373.

Abstract

This paper focusses on a hybrid approach based on genetic algorithm (GA) and an adaptive neuro fuzzy inference system (ANFIS) for modeling the correlation between plasma arc cutting (PAC) parameters and the response characteristics of machined Monel 400 alloy sheets. PAC experiments are performed based on box-behnken design methodology by considering cutting speed, gas pressure, arc current, and stand-off distance as input parameters, and surface roughness (Ra), kerf width (kw), and micro hardness (mh) as response characteristics. GA is efficaciously utilized as the training algorithm to optimize the ANFIS parameters. The training, testing errors, and statistical validation parameter results indicated that the ANFIS learned by GA outperforms in the forecasting of PAC responses compared with the results of multiple linear regression models. Besides that, to obtain the optimal combination PAC parameters, multi-response optimization was performed using a trained ANFIS network coupled with an artificial bee colony algorithm (ABC). The superlative responses, such as of 1.5387 µm, of 1.2034 mm, and of 176.08, are used to forecast the optimum cutting conditions, such as a cutting speed of 2330.39 mm/min, gas pressure of 3.84 bar, arc current of 45 A, and stand-off distance of 2.01 mm, respectively. Furthermore, the ABC predicted results are validated by conducting confirmatory experiments, and it was found that the error between the predicted and the actual results are lower than 6.38%, indicating the adoptability of the proposed ABC in optimizing real-world complex machining processes.

摘要

本文重点研究了一种基于遗传算法(GA)和自适应神经模糊推理系统(ANFIS)的混合方法,用于对等离子弧切割(PAC)参数与加工蒙乃尔400合金板材的响应特性之间的相关性进行建模。基于Box-Behnken设计方法进行PAC实验,将切割速度、气体压力、电弧电流和离焦量作为输入参数,将表面粗糙度(Ra)、切口宽度(kw)和显微硬度(mh)作为响应特性。有效地利用GA作为训练算法来优化ANFIS参数。训练、测试误差和统计验证参数结果表明,与多元线性回归模型的结果相比,由GA学习的ANFIS在预测PAC响应方面表现更优。除此之外,为了获得最佳的PAC参数组合,使用经过训练的ANFIS网络结合人工蜂群算法(ABC)进行多响应优化。诸如1.5387 µm的表面粗糙度、1.2034 mm的切口宽度和176.08的显微硬度等最佳响应分别用于预测最佳切割条件,如切割速度为2330.39 mm/min、气体压力为3.84 bar、电弧电流为45 A和离焦量为2.01 mm。此外,通过进行验证性实验对ABC预测结果进行验证,发现预测结果与实际结果之间的误差低于6.38%,表明所提出的ABC在优化实际复杂加工过程中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99e2/8585274/46f75875ae2c/materials-14-06373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验