Suppr超能文献

实现净零排放路径对于气候成果至关重要。

Path to net zero is critical to climate outcome.

机构信息

Environmental Defense Fund, New York City, NY, 10010, USA.

出版信息

Sci Rep. 2021 Nov 12;11(1):22173. doi: 10.1038/s41598-021-01639-y.

Abstract

Net zero greenhouse gas targets have become a central element for climate action. However, most company and government pledges focus on the year that net zero is reached, with limited awareness of how critical the emissions pathway is in determining the climate outcome in both the near- and long-term. Here we show that different pathways of carbon dioxide and methane-the most prominent long-lived and short-lived greenhouse gases, respectively-can lead to nearly 0.4 °C of warming difference in midcentury and potential overshoot of the 2 °C target, even if they technically reach global net zero greenhouse gas emissions in 2050. While all paths achieve the Paris Agreement temperature goals in the long-term, there is still a 0.2 °C difference by end-of-century. We find that early action to reduce both emissions of carbon dioxide and methane simultaneously leads to the best climate outcomes over all timescales. We therefore recommend that companies and countries supplement net zero targets with a two-basket set of interim milestones to ensure that early action is taken for both carbon dioxide and methane. A one-basket approach, such as the standard format for Nationally Determined Contributions, is not sufficient because it can lead to a delay in methane mitigation.

摘要

净零温室气体目标已成为气候行动的核心要素。然而,大多数公司和政府的承诺都集中在实现净零的年份,而对确定近期和长期气候结果的排放途径的重要性认识有限。在这里,我们表明,二氧化碳和甲烷的不同途径——分别是最主要的长寿命和短寿命温室气体——可能导致本世纪中叶升温差异近 0.4°C,并有可能超过 2°C 的目标,即使它们在技术上能在 2050 年实现全球温室气体净零排放。虽然所有途径在长期内都能实现《巴黎协定》的温度目标,但到本世纪末仍有 0.2°C 的差异。我们发现,尽早采取行动同时减少二氧化碳和甲烷的排放,会在所有时间尺度上带来最佳的气候结果。因此,我们建议公司和国家在净零目标之外,设置两篮子的中期里程碑,以确保尽早采取行动来减少二氧化碳和甲烷。一篮子的方法,如国家自主贡献的标准格式,是不够的,因为它可能导致甲烷减排的延迟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a028/8589977/1d2f8b435411/41598_2021_1639_Fig1_HTML.jpg

相似文献

1
Path to net zero is critical to climate outcome.
Sci Rep. 2021 Nov 12;11(1):22173. doi: 10.1038/s41598-021-01639-y.
2
Methane and the Paris Agreement temperature goals.
Philos Trans A Math Phys Eng Sci. 2022 Jan 24;380(2215):20200456. doi: 10.1098/rsta.2020.0456. Epub 2021 Dec 6.
3
Achieving net-zero emissions targets: An analysis of long-term scenarios using an integrated assessment model.
Ann N Y Acad Sci. 2023 Apr;1522(1):98-108. doi: 10.1111/nyas.14970. Epub 2023 Feb 25.
4
The Climate Mitigation Challenge-Where Do We Stand?
J Air Waste Manag Assoc. 2021 Oct;71(10):1234-1250. doi: 10.1080/10962247.2021.1948458.
5
Nature-based solutions are critical for putting Brazil on track towards net-zero emissions by 2050.
Glob Chang Biol. 2023 Dec;29(24):7085-7101. doi: 10.1111/gcb.16984. Epub 2023 Oct 31.
6
The complementary role of carbon dioxide removal: A catalyst for advancing the COP28 pledges towards the 1.5 °C Paris Agreement target.
Sci Total Environ. 2024 Oct 15;947:174302. doi: 10.1016/j.scitotenv.2024.174302. Epub 2024 Jun 28.
7
Implications of possible interpretations of 'greenhouse gas balance' in the Paris Agreement.
Philos Trans A Math Phys Eng Sci. 2018 May 13;376(2119). doi: 10.1098/rsta.2016.0445.
8
How much do direct livestock emissions actually contribute to global warming?
Glob Chang Biol. 2018 Apr;24(4):1749-1761. doi: 10.1111/gcb.13975. Epub 2017 Nov 27.
9
Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10315-10323. doi: 10.1073/pnas.1618481114. Epub 2017 Sep 14.
10
Defining national biogenic methane targets: Implications for national food production & climate neutrality objectives.
J Environ Manage. 2021 Oct 1;295:113058. doi: 10.1016/j.jenvman.2021.113058. Epub 2021 Jun 23.

引用本文的文献

1
Implications of accelerated and delayed climate action for Ireland's energy transition under carbon budgets.
NPJ Clim Action. 2024;3(1):97. doi: 10.1038/s44168-024-00181-7. Epub 2024 Nov 2.
2
Green endoscopy, one step toward a sustainable future: Literature review.
Endosc Int Open. 2024 Aug 23;12(8):E968-E980. doi: 10.1055/a-2303-8621. eCollection 2024 Aug.
4
Net-zero, resilience, and agile closed-loop supply chain network design considering robustness and renewable energy.
Environ Sci Pollut Res Int. 2025 Jun;32(28):17210-17228. doi: 10.1007/s11356-024-32661-y. Epub 2024 Mar 13.
6
The impact of methane leakage on the role of natural gas in the European energy transition.
Nat Commun. 2023 Sep 16;14(1):5756. doi: 10.1038/s41467-023-41527-9.
7
Microbial methane munchers offer a shield from the scorch.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2313579120. doi: 10.1073/pnas.2313579120. Epub 2023 Sep 14.
8
A methanotrophic bacterium to enable methane removal for climate mitigation.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2310046120. doi: 10.1073/pnas.2310046120. Epub 2023 Aug 21.
9
Boosting the overall electrochemical water splitting performance of pentlandites through non-metallic heteroatom incorporation.
iScience. 2022 Sep 15;25(10):105148. doi: 10.1016/j.isci.2022.105148. eCollection 2022 Oct 21.

本文引用的文献

1
Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming.
Environ Res Lett. 2021 Jul;16(7):074009. doi: 10.1088/1748-9326/abfcf9. Epub 2021 Jun 23.
2
Cost-effective implementation of the Paris Agreement using flexible greenhouse gas metrics.
Sci Adv. 2021 May 28;7(22). doi: 10.1126/sciadv.abf9020. Print 2021 May.
3
Net-zero emission targets for major emitting countries consistent with the Paris Agreement.
Nat Commun. 2021 Apr 9;12(1):2140. doi: 10.1038/s41467-021-22294-x.
4
Net-zero emissions targets are vague: three ways to fix.
Nature. 2021 Mar;591(7850):365-368. doi: 10.1038/d41586-021-00662-3.
5
CMIP6 climate models imply high committed warming.
Clim Change. 2020;162(3):1515-1520. doi: 10.1007/s10584-020-02849-5. Epub 2020 Sep 4.
6
Improved calculation of warming-equivalent emissions for short-lived climate pollutants.
NPJ Clim Atmos Sci. 2019 Sep 4;2(1):29. doi: 10.1038/s41612-019-0086-4.
7
A new scenario logic for the Paris Agreement long-term temperature goal.
Nature. 2019 Sep;573(7774):357-363. doi: 10.1038/s41586-019-1541-4. Epub 2019 Sep 18.
8
Implications of possible interpretations of 'greenhouse gas balance' in the Paris Agreement.
Philos Trans A Math Phys Eng Sci. 2018 May 13;376(2119). doi: 10.1098/rsta.2016.0445.
9
Unmask temporal trade-offs in climate policy debates.
Science. 2017 May 5;356(6337):492-493. doi: 10.1126/science.aaj2350.
10
Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):657-662. doi: 10.1073/pnas.1612066114. Epub 2017 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验