Suppr超能文献

高分辨率三维成像在黑色素瘤中的精准分期。

High-resolution three-dimensional imaging for precise staging in melanoma.

机构信息

Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany; Department of Dermatology, Venerology and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; West German Cancer Center, University Duisburg-Essen, 45122, Essen, Germany; German Consortium for Translational Cancer Research, Partner Site University Hospital Essen, Essen, Germany.

Department of Dermatology, Venerology and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; West German Cancer Center, University Duisburg-Essen, 45122, Essen, Germany; German Consortium for Translational Cancer Research, Partner Site University Hospital Essen, Essen, Germany.

出版信息

Eur J Cancer. 2021 Dec;159:182-193. doi: 10.1016/j.ejca.2021.09.026. Epub 2021 Nov 10.

Abstract

INTRODUCTION

Many cancer guidelines include sentinel lymph node (SLN) staging to identify microscopic metastatic disease. Current SLN analysis of melanoma patients is effective but has the substantial drawback that only a small representative portion of the node is sampled, whereas most of the tissue is discarded. This might explain the high clinical false-negative rate of current SLN diagnosis in melanoma. Furthermore, the quantitative assessment of metastatic load and microanatomical localisation might yield prognosis with higher precision. Thus, methods to analyse entire SLNs with cellular resolution apart from tedious sequential physical sectioning are required.

PATIENTS AND METHODS

Eleven melanoma patients eligible to undergo SLN biopsy were included in this prospective study. SLNs were fixed, optically cleared, whole-mount stained and imaged using light sheet fluorescence microscopy (LSFM). Subsequently, compatible and unbiased gold standard histopathological assessment allowed regular patient staging. This enabled intrasample comparison of LSFM and histological findings. In addition, the development of an algorithm, RAYhance, enabled easy-to-handle display of LSFM data in a browsable histologic slide-like fashion.

RESULTS

We comprehensively quantify total tumour volume while simultaneously visualising cellular and anatomical hallmarks of the associated SLN architecture. In a first-in-human study of 21 SLN of melanoma patients, LSFM not only confirmed all metastases identified by routine histopathological assessment but also additionally revealed metastases not detected by routine histology alone. This already led to additional therapeutic options for one patient.

CONCLUSION

Our three-dimensional digital pathology approach can increase sensitivity and accuracy of SLN metastasis detection and potentially alleviate the need for conventional histopathological assessment in the future. GERMAN CLINICAL TRIALS REGISTER: (DRKS00015737).

摘要

简介

许多癌症指南包括前哨淋巴结 (SLN) 分期,以识别微观转移性疾病。目前对黑色素瘤患者的 SLN 分析是有效的,但有一个很大的缺点,即仅对淋巴结的一小部分进行有代表性的取样,而大部分组织被丢弃。这可能解释了当前黑色素瘤 SLN 诊断的高临床假阴性率。此外,对转移负荷和微观解剖定位的定量评估可能会提高预后的精度。因此,需要除了繁琐的顺序物理切片外,还需要用细胞分辨率分析整个 SLN 的方法。

患者和方法

这项前瞻性研究纳入了 11 名符合 SLN 活检条件的黑色素瘤患者。SLN 固定、光学透明、全染色并使用光片荧光显微镜 (LSFM) 成像。随后,兼容且无偏倚的金标准组织病理学评估允许对患者进行常规分期。这使得可以在样本内比较 LSFM 和组织学发现。此外,开发了一种算法 RAYhance,能够以可浏览的组织切片样式轻松显示 LSFM 数据。

结果

我们全面量化了总肿瘤体积,同时可视化了相关 SLN 结构的细胞和解剖学特征。在对 21 例黑色素瘤患者的 SLN 的首次人体研究中,LSFM 不仅确认了常规组织病理学评估识别的所有转移灶,还额外发现了常规组织学单独检测不到的转移灶。这已经为一名患者提供了额外的治疗选择。

结论

我们的三维数字病理学方法可以提高 SLN 转移检测的灵敏度和准确性,并有可能减轻未来对常规组织病理学评估的需求。德国临床试验注册处:(DRKS00015737)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验