Department of Surgery, IU School of Medicine, Indianapolis, IN, USA.
Division of Cardiovascular Medicine, Department of Medicine, IU School of Medicine, Indianapolis, IN, USA; Division of Cardiovascular Medicine, Center for Regenerative Medicine, University of Florida, Gainesville, FL, USA.
J Mol Cell Cardiol. 2022 Mar;164:1-12. doi: 10.1016/j.yjmcc.2021.11.002. Epub 2021 Nov 11.
Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage.
Isolated mouse hearts were divided into: no cold storage (control), 6 h cold storage (6 h-I), 6 h-I + conditioned media from bone marrow MSCs (BM-MSC CM), and 6 h-I + adipose-MSC CM (Ad-MSC CM). Deep RNA sequencing analysis revealed that compared to control, 6 h-I led to 266 differentially expressed genes, many of which were implicated in modulating mitochondrial performance, oxidative stress response, myocardial function, and apoptosis. BM-MSC CM and Ad-MSC CM restored these gene expression towards control. They also improved 6 h-I-induced myocardial functional depression, reduced inflammatory cytokine production, decreased apoptosis, and reduced myocardial HO. However, neither MSC-exosomes nor exosome-depleted CM recapitulated MSC CM-ameliorated apoptosis and CM-improved mitochondrial preservation during cold ischemia. Knockdown of Per2 by specific siRNA abolished MSC CM-mediated these protective effects in cardiomyocytes following 6 h cold storage.
Our results demonstrated that using MSC secretome (BM-MSCs and Ad-MSCs) during prolonged cold storage confers preservation of the normal transcriptional "fingerprint", and reduces donor heart damage. MSC-released soluble factors and exosomes may synergistically act for donor heart protection.
心脏移植是治疗终末期心脏病患者的一种救生方法,但供体器官的短缺限制了其应用。虽然延长保存时间可以提供更多的器官,但也会增加缺血程度。因此,我们试图了解供体心脏在长时间保存过程中病理生理变化的分子机制。此外,考虑到间充质基质细胞(MSC)衍生的旁分泌保护作用,我们旨在测试 MSC 分泌组是否能保持心肌转录组谱,以及来自特定来源的 MSC 分泌组在冷保存期间是否能为供体心脏提供最佳保护。
分离的小鼠心脏分为:无冷储存(对照)、6 小时冷储存(6h-I)、6h-I+骨髓间充质干细胞(BM-MSC)条件培养基(BM-MSC CM)和 6h-I+脂肪间充质干细胞 CM(Ad-MSC CM)。深度 RNA 测序分析显示,与对照相比,6h-I 导致 266 个差异表达基因,其中许多基因与调节线粒体功能、氧化应激反应、心肌功能和细胞凋亡有关。BM-MSC CM 和 Ad-MSC CM 将这些基因表达恢复到对照水平。它们还改善了 6h-I 诱导的心肌功能障碍,减少了炎症细胞因子的产生,减少了细胞凋亡,降低了心肌 HO。然而,MSC-exosomes 或 exosome 耗尽的 CM 都不能再现 MSC CM 减轻凋亡和改善冷缺血时的线粒体保存。用特定的 siRNA 敲低 Per2 可消除 MSC CM 在 6 小时冷储存后对心肌细胞的这些保护作用。
我们的结果表明,在长时间冷储存期间使用 MSC 分泌组(BM-MSCs 和 Ad-MSCs)可保持正常的转录“指纹”,并减少供体心脏损伤。MSC 释放的可溶性因子和外泌体可能协同作用保护供体心脏。