Department of Chemical & Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Florida State University, Tallahassee, Florida, USA.
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA.
J Extracell Vesicles. 2024 Aug;13(8):e12472. doi: 10.1002/jev2.12472.
Recently, therapies utilizing extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have begun to show promise in clinical trials. However, EV therapeutic potential varies with MSC tissue source and in vitro expansion through passaging. To find the optimal MSC source for clinically translatable EV-derived therapies, this study aims to compare the angiogenic and immunomodulatory potentials and the protein and miRNA cargo compositions of EVs isolated from the two most common clinical sources of adult MSCs, bone marrow and adipose tissue, across different passage numbers. Primary bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs) were isolated from adult female Lewis rats and expanded in vitro to the indicated passage numbers (P2, P4, and P8). EVs were isolated from the culture medium of P2, P4, and P8 BMSCs and ASCs and characterized for EV size, number, surface markers, protein content, and morphology. EVs isolated from different tissue sources showed different EV yields per cell, EV sizes, and protein yield per EV. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of proteomics data and miRNA seq data identified key proteins and pathways associated with differences between BMSC-EVs and ASC-EVs, as well as differences due to passage number. In vitro tube formation assays employing human umbilical vein endothelial cells suggested that both tissue source and passage number had significant effects on the angiogenic capacity of EVs. With or without lipopolysaccharide (LPS) stimulation, EVs more significantly impacted expression of M2-macrophage genes (IL-10, Arg1, TGFβ) than M1-macrophage genes (IL-6, NOS2, TNFα). By correlating the proteomics analyses with the miRNA seq analysis and differences observed in our in vitro immunomodulatory, angiogenic, and proliferation assays, this study highlights the trade-offs that may be necessary in selecting the optimal MSC source for development of clinical EV therapies.
最近,利用间充质基质/干细胞(MSCs)衍生的细胞外囊泡(EVs)的疗法在临床试验中开始显示出前景。然而,EV 的治疗潜力因 MSC 组织来源和传代培养而有所不同。为了找到可临床转化的 EV 衍生治疗的最佳 MSC 来源,本研究旨在比较从两种最常见的成人 MSC 临床来源(骨髓和脂肪组织)中分离的 EV 的血管生成和免疫调节潜力,以及 EV 的蛋白和 miRNA 货物组成,跨越不同的传代数。从成年雌性 Lewis 大鼠的骨髓和脂肪组织中分离原代骨髓间充质干细胞(BMSCs)和脂肪来源的间充质干细胞(ASCs),并在体外扩增至指定的传代数(P2、P4 和 P8)。从 P2、P4 和 P8 的 BMSCs 和 ASCs 培养物中分离 EV,并对 EV 的大小、数量、表面标志物、蛋白含量和形态进行表征。从不同组织来源分离的 EV 显示出每细胞的 EV 产量、EV 大小和每 EV 的蛋白产量不同。蛋白质组学数据和 miRNA seq 数据的基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路分析确定了与 BMSC-EV 和 ASC-EV 之间差异以及传代数差异相关的关键蛋白和途径。用人脐静脉内皮细胞进行的体外管形成试验表明,组织来源和传代数对 EV 的血管生成能力均有显著影响。无论是否有脂多糖(LPS)刺激,EV 对 M2 巨噬细胞基因(IL-10、Arg1、TGFβ)的表达影响比 M1 巨噬细胞基因(IL-6、NOS2、TNFα)更为显著。通过将蛋白质组学分析与 miRNA seq 分析相关联,并结合我们在体外免疫调节、血管生成和增殖试验中观察到的差异,本研究强调了在为临床 EV 治疗开发选择最佳 MSC 来源时可能需要做出的权衡。