Univ Savoie Mont Blanc, Interuniversity Laboratory of Human Movement Sciences, EA 7424, F-73000, Chambéry, France.
Le Mans Université, Movement - Interactions - Performance, MIP, EA 4334, F-72000, Le Mans, France.
Scand J Med Sci Sports. 2022 Mar;32(3):559-575. doi: 10.1111/sms.14097. Epub 2021 Nov 29.
The aim was to determine the respective influences of sprinting maximal power output ( ) and mechanical Force-velocity (F-v) profile (ie, ratio between horizontal force production capacities at low and high velocities) on sprint acceleration performance. A macroscopic biomechanical model using an inverse dynamics approach applied to the athlete's center of mass during running acceleration was developed to express the time to cover a given distance as a mathematical function of and F-v profile. Simulations showed that sprint acceleration performance depends mainly on , but also on the F-v profile, with the existence of an individual optimal F-v profile corresponding, for a given , to the best balance between force production capacities at low and high velocities. This individual optimal profile depends on and sprint distance: the lower the sprint distance, the more the optimal F-v profile is oriented to force capabilities and vice versa. When applying this model to the data of 231 athletes from very different sports, differences between optimal and actual F-v profile were observed and depend more on the variability in the optimal F-v profile between sprint distances than on the interindividual variability in F-v profiles. For a given sprint distance, acceleration performance (<30 m) mainly depends on and slightly on the difference between optimal and actual F-v profile, the weight of each variable changing with sprint distance. Sprint acceleration performance is determined by both maximization of the horizontal power output capabilities and the optimization of the mechanical F-v profile of sprint propulsion.
目的在于确定最大冲刺功率输出()和机械力-速度(F-v)特性(即在低速度和高速度下产生水平力的能力之间的比率)对冲刺加速度性能的各自影响。为了在运动员加速跑步期间表达出时间与距离的关系,我们使用反向动力学方法开发了一个宏观生物力学模型来表达给定距离的时间,该模型将距离的时间表达为和 F-v 特性的数学函数。模拟结果表明,冲刺加速度性能主要取决于,也取决于 F-v 特性,对于给定的,存在着最佳的 F-v 特性,以在低速度和高速度下的力产生能力之间达到最佳平衡。这种最佳的个体特性取决于和冲刺距离:冲刺距离越低,最佳 F-v 特性就越倾向于力量能力,反之亦然。当将此模型应用于来自不同运动项目的 231 名运动员的数据时,观察到最佳和实际 F-v 特性之间存在差异,并且这些差异更多地取决于最佳 F-v 特性在不同冲刺距离之间的可变性,而不是 F-v 特性之间的个体可变性。对于给定的冲刺距离,加速度性能(<30 米)主要取决于和最佳与实际 F-v 特性之间的差异,每个变量的权重随冲刺距离而变化。冲刺加速度性能取决于最大程度地提高水平功率输出能力和优化冲刺推进的机械 F-v 特性。