Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
State University of Western Parana, Cascavel, Parana, Brazil.
PLoS One. 2018 Oct 5;13(10):e0204473. doi: 10.1371/journal.pone.0204473. eCollection 2018.
This study aimed to compare the components of force-velocity (F-V) and power-velocity (P-V) profiles and the mechanical effectiveness of force application (or force ratio-RF) among various sled-towing loads during the entire acceleration phase of a weighted sled sprint. Eighteen sprinters performed four 50-m sprints in various conditions: unloaded; with a load corresponding to 20% of the athlete's body mass (BM); with a load of 30% BM; and with a load of 40% BM. Data were collected with five video cameras, and the images were digitised to obtain velocity from the derivation of the centre-of-mass position. F-V and P-V components and RF were estimated from sprinting velocity-time data for each load using a validated method that is based on an inverse dynamic approach applied to the sprinter's centre-of-mass (it models the horizontal antero-posterior and vertical ground reaction force components) and requires only measurement of anthropometric and spatiotemporal variables (body mass, stature and instantaneous position or velocity during the acceleration phase). The theoretical maximal velocity decreased with load compared with the unloaded condition (for 20% BM: -6%, effect size (ES) = 0,38; for 30% BM: -15%, ES = 1.02; for 40% BM: -18%, ES = 1.10). The theoretical maximal horizontal force (F0) and maximal power were not different among conditions. However, power at the end of the acceleration phase increased with load (40% BM vs 0%: 72%; ES = 2.73) as well as the maximal mechanical effectiveness (12%; ES = 0.85). The linear decrease in RF was different between 30 or 40% BM and the unloaded condition (-23%; ES = 0.74 and 0.66). Better effectiveness may be developed with 40% BM load at the beginning of the acceleration and with the various load-induced changes in the components of the F-V and P-V relationships, allowing a more accurate determination of optimal loading conditions for maximizing power.
本研究旨在比较在负重雪橇冲刺的整个加速阶段中,各种雪橇拖曳负荷的力-速度(F-V)和功率-速度(P-V)曲线的组成部分,以及力应用的机械效率(或力比-RF)。18 名短跑运动员在以下各种条件下进行了 4 次 50 米短跑:无负荷;负荷为运动员体重的 20%(BM);负荷为 30% BM;负荷为 40% BM。使用五台摄像机采集数据,并对图像进行数字化处理,以从质心位置的导数中获得速度。F-V 和 P-V 分量和 RF 是使用一种经过验证的方法从每个负荷的冲刺速度-时间数据中估算出来的,该方法基于一种应用于短跑运动员质心的逆动力学方法(它模拟了水平前后向和垂直地面反作用力分量),只需要测量人体测量学和时空变量(体重、身高和加速阶段的瞬时位置或速度)。与无负荷相比,理论最大速度随负荷的增加而降低(对于 20% BM:-6%,效应量(ES)= 0.38;对于 30% BM:-15%,ES = 1.02;对于 40% BM:-18%,ES = 1.10)。在条件之间,理论最大水平力(F0)和最大功率没有差异。然而,加速阶段结束时的功率随负荷增加(40% BM 与 0% BM 相比:72%;ES = 2.73),最大机械效率(12%;ES = 0.85)也增加。30%或 40% BM 与无负荷条件下的 RF 线性下降不同(-23%;ES = 0.74 和 0.66)。在加速开始时使用 40% BM 负荷和各种负荷引起的 F-V 和 P-V 关系组成部分的变化,可能会提高更好的效果,从而更准确地确定最佳加载条件以最大化功率。