Kazashi Yoshihito, Nobile Fabio
Institute of Mathematics, École Polytechnique Fédérale de Lausanne, CSQI, Station 8, CH-1015 Lausanne, Switzerland.
Stoch Partial Differ Equ. 2021;9(3):603-629. doi: 10.1007/s40072-020-00177-4. Epub 2020 Aug 5.
An existence result is presented for the dynamical low rank (DLR) approximation for random semi-linear evolutionary equations. The DLR solution approximates the true solution at each time instant by a linear combination of products of deterministic and stochastic basis functions, both of which evolve over time. A key to our proof is to find a suitable equivalent formulation of the original problem. The so-called Dual Dynamically Orthogonal formulation turns out to be convenient. Based on this formulation, the DLR approximation is recast to an abstract Cauchy problem in a suitable linear space, for which existence and uniqueness of the solution in the maximal interval are established.
给出了随机半线性发展方程的动态低秩(DLR)逼近的一个存在性结果。DLR解在每个时刻通过确定性和随机基函数乘积的线性组合来逼近真解,这两种基函数都随时间演化。我们证明的关键是找到原始问题的一个合适的等价表述。事实证明,所谓的对偶动态正交表述很方便。基于此表述,DLR逼近被重新表述为一个合适线性空间中的抽象柯西问题,为此建立了最大区间内解的存在性和唯一性。