Hu Jiumei, Chen Liben, Zhang Pengfei, Hsieh Kuangwen, Li Hui, Yang Samuel, Wang Tza-Huei
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
Lab Chip. 2021 Nov 25;21(23):4716-4724. doi: 10.1039/d1lc00636c.
There remains an unmet need for a simple microfluidic platform that can perform multi-step and multi-reagent biochemical assays in parallel for high-throughput detection and analysis of single molecules and single cells. In response, we report herein a PDMS-based vacuum-driven microfluidic array that is capable of multi-step sample loading and digitalization. The array features multi-level bifurcation microchannels connecting to 4096 dead-end microchambers for partitioning liquid reagents/samples. To realize multi-step repetitive liquid sample loading, we attach an external vacuum onto the chip to create internal negative pressure for a continuous liquid driving force. We demonstrated a high uniformity of our device for three sequential liquid loadings. To further improve its utility, we developed a thermosetting-oil covering method to prevent evaporation for assays that require high temperatures. We successfully performed digital PCR assays on our device, demonstrating the efficient multi-step reagent handling and the effective anti-evaporation design for thermal cycling. Furthermore, we performed a digital PCR detection for single-cell methicillin-resistant using a three-step loading approach and achieved accurate single-cell quantification. Taken together, we have demonstrated that our vacuum-driven microfluidic array is capable of multi-step sample digitalization at high throughput for single-molecule and single-cell analyses.
对于一种能够并行执行多步骤、多试剂生化分析以实现单分子和单细胞高通量检测与分析的简单微流控平台,仍存在未满足的需求。作为回应,我们在此报告一种基于聚二甲基硅氧烷(PDMS)的真空驱动微流控阵列,它能够进行多步骤样品加载和数字化。该阵列具有连接到4096个死端微腔室的多级分支微通道,用于分隔液体试剂/样品。为了实现多步骤重复液体样品加载,我们在芯片上连接外部真空以产生内部负压,从而形成连续的液体驱动力。我们展示了该装置在三次连续液体加载中的高度均匀性。为了进一步提高其实用性,我们开发了一种热固性油覆盖方法,以防止在需要高温的分析中发生蒸发。我们在该装置上成功进行了数字PCR分析,证明了其高效的多步骤试剂处理能力以及热循环过程中有效的抗蒸发设计。此外,我们采用三步加载方法对单细胞耐甲氧西林金黄色葡萄球菌进行了数字PCR检测,并实现了准确的单细胞定量。综上所述,我们已经证明我们的真空驱动微流控阵列能够以高通量进行多步骤样品数字化,用于单分子和单细胞分析。